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Methodologies for Coupled Transient
Electromagnetic-Thermal Finite-Element

Modeling of Electrical Energy Transducers
Johan Driesen, Member, IEEE, Ronnie J. M. Belmans, Senior Member, IEEE, and Kay Hameyer, Member, IEEE

Abstract—The coupled transient computation of the interacting
electromagnetic-thermal fields in electrical energy transducers
containing significantly different time constants is discussed.
Methodologies to deal with the numerical stiffness, encountered in
the magnetic field, thermal field and loss computation, while using
standard integration methods, are outlined. Such computation
techniques are illustrated using two application examples: a
permanent-magnet synchronous machine and a three-phase
transformer.

Index Terms—Electrothermal effects, finite-element method,
thermal modeling.

I. INTRODUCTION

A. Problem Situation

I N DIFFERENT types of electrical energy transducers such
as transformers, electrical machines, and generators, it is im-

portant to study the electromagnetic behavior jointly with the
thermal behavior, for instance, to study the efficiency, to esti-
mate the lifetime, etc. Two interactions justify such a coupled
view.

• Most thermal energy sources heating up these devices are,
in fact, electromagnetic losses. These can be Joule-type
losses such as eddy-current losses or iron losses. Gener-
ally, these quantities are a function of the local electro-
magnetic field. Therefore, they represent a coupling of the
electromagnetic field to the thermal field.

• Many material characteristics playing a role in the elec-
tromagnetic field are dependent on the local temperature.
For instance, the electrical conductivity of a copper con-
ductor may change about 30% over the temperature in-
terval of some 100C in which most electrical machines
operate. Another important example is the shift of the per-
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manent-magnet characteristic of the hard magnetic mate-
rials involved in permanent-magnet machines under local
temperature changes [1].

For these reasons, it is often a necessity to perform a coupled
field analysis, using, for instance, the finite-element method
(FEM) [2], already in the design stage of the electrical energy
transducer. However, the different nature of the physical fields
involved and, especially the dynamics, reflected in their charac-
teristic time constants, impose difficulties in the simulation.

B. Numerical Stiffness

Transient numerical simulations become troublesome when
the system to be simulated contains dynamic phenomena on a
largely different time scale (time constant) [3]. In the case of
electromagnetic fields, the typical time scale is small as it is
governed by the supply’s fundamental frequency and the ro-
tation. It can even be smaller when power electronic supplies
using pulsewidth modulation (PWM) techniques, yielding en-
larged losses, are used. On the other hand, the thermal field
changes at a much slower rate. The ratio between the largest
and smallest time constant is known as the stiffness ratio, which
can have values of as high as 10for electrical machines.

The mathematical difficulty arising while simulating the
coupled transient behavior is known as numerical stiffness.
Other authors dealing with similar and other coupled problem
computations (e.g., [4]) encountered similar problems and used
adapted techniques such as backward differentiation (BDF)
methods. This problem is treated in this paper along with
some approaches to solve it while using standard integration
methods.

The main problem is related to the time step choice in the
simulation. The following options exist.

• One is the choice of a very small but stable time step,
related to the magnetic field dynamics, yielding an ex-
tremely long calculation time.

• Another is the choice of a large time step related to the
thermal time step, requiring special, expensive integration
methods in order to obtain a stable computation.

• It might seem interesting to use different time steps for the
subproblems, but this involves a possibly unstable extra-
polation.

• Assume that one of the subproblems is in a “continuous
steady state.” This technique is often applied (e.g., [5]),
more in particular when the magnetic field is recalculated
in the frequency domain after every time step, however, it
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cannot be excluded that the underlying implicit extrapola-
tion yields a divergence as demonstrated in [6];

• Another option is to adapt the problem formulation to
work around a time scale and use standard integration
methods.

The latter approach is illustrated here.

II. M AGNETIC FIELD ANALYSIS

The two-dimensional (2-D) magnetic field equation is written
in terms of the magnetic vector potential [7]:

(1)

with
component of the vector potential;

temperature;
reluctivity;
electrical conductivity;
voltage potential gradient;
permanent-magnet source field.

In the further development of this equation, one has to ac-
count for the rotational time constant. Two approaches are made,
depending on the preferred choice of reference frame.

A. Reference Frame With Fixed Magnetic Field

In electrical machines such as dc machines and synchronous
machines, it is interesting to fix the reference frame to the field
source to obtain a relatively fixed magnetic field arrangement.
For synchronous machines, it is fixed to the rotor and for dc
machines to the stator. In that case, the induced voltage term is
developed as

(2)

For a rotating device, the effect of the second term in (2)
containing the speed, representing the voltage induced by the
rotation, is dominant over the local field changes described by
the first term. However, these changes contribute to the losses
(e.g., in the magnets). The first term in (2) is neglected in the
global field calculation, and the second term is usually calcu-
lated separately, by extracting the fundamental induced voltage
[8]. It is then substituted in (1) as a finite difference (3). The
parameter originates from the time-stepping method [7]

(3)

Consequently, the magnetic model is reduced to a series of
(semi)static magnetic field computations with externally deter-
mined currents, computed once per thermal time step. The tem-
perature-dependent material properties change with the pace of
the thermal model’s time step.

Fig. 1. A function with fast (oscillation) and slow dynamics (envelope
evolution). The function envelope evolution is to be simulated.

B. Reference Frame With Rotating or Oscillating Magnetic
Field

Alternatively, it is possible to use a reference frame in
which the magnetic field rotates or oscillates, for instance,
in an induction machine or in a transformer. An efficient
transient-type solver can still be obtained by assuming the
solution can be written in the following complex form, with

the field pulsation [6]

(4)

This is an extension of the assumption behind the time-har-
monic method [7], but now we assume the solution part in the
complex phasor form changes in time. Equation (4) splits the
fast dynamics at the studied frequency (the exponential terms)
and the slow dynamics in the phasor. The phasor can be inter-
preted as complex “envelope” of the fast oscillating harmonic
function (Fig. 1).

Assuming the source in (1) is written in the form of (4) and
neglecting the permanent magnetization, this leads to

(5)

This equation is transformed into FEM equations using the
Galerkin method. The time derivative is replaced by a finite dif-
ference with the of the thermal equation.

III. T HERMAL FIELD ANALYSIS

Although the thermal field calculation seems more or less
obvious, the rotation has to be dealt with as well. This reflects
in the spatial distribution of the losses and the different radial
heat paths. To get around this problem, one can use two models
using different reference frames. One model uses a stator-fixed
frame, while the other uses a rotor-fixed frame (see [9] for the
background of this methodology). The thermal field equation is

(6)

with
temperature;
total losses;
thermal conductivity;
mass density;
specific heat.



1246 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2002

To model the cooling, these models are extended with con-
vective boundary conditions. Air gaps are generally represented
by means of an equivalent heat-conducting material. The equiv-
alent conductivity is calculated considering the thermal resis-
tance obtained by applying two convective transfers in series.
The convective heat coefficients are calculated considering the
state of the air flow in the air gap. Convection parameters for the
inner parts are difficult to determine [16]. Equivalent anisotropic
materials or special element relations are used to model thermal
contact resistances and thin insulation layers [9].

IV. FIELD INTERACTIONS

A. Thermally Dependent Material Characteristics

Generally, for the temperature range in which the majority of
electrical machines operate, two types of thermally dependent
material characteristics have to be taken into account.

• Electrical Conductivity: Within the finite element, the
value is updated using the temperature change and the
thermal coefficient.

• Permanent Magnet Characteristic: The shift of the char-
acteristic is used to implement the change of the magneti-
zation in (1). The point of irreversible magnetization alters
as well.

B. Loss Calculations

Several types of physical losses are to be included in the
right-hand-side term of the thermal equation, each with a dif-
ferent specific calculation method. Hence, the typically mea-
sured losses such as stray load loss are included.

• Joule Losses: This loss density is computed by calculating
the joule loss integral in every conductor finite element.
Eddy-current contributions may be present.

• Iron Losses: These have different components (hysteresis,
eddy-current, and excess losses) and are calculated by nu-
merically integrating, for every finite element, analytical
expressions using the field changes during one rotation
[11]. These values are calculated based on the flux loci in
the elements (Fig. 2), obtained from the set of semistatic
magnetic models, each rotated over a small angle (Fig. 3).
These FEM calculations are performed relatively fast,
since the saturation can be “frozen” yielding a linear
problem. Hence, fast rotational effects are counted in.

• Permanent-Magnet Joule Losses: These occur in elec-
trically conductive surface-mounted permanent-magnet
blocks and are calculated under the simplifying assump-
tion that they do not affect the global magnetic field, so
the first term in (2) can be reconstructed in the perma-
nent magnet finite elements, based on the same set of
semistatic magnetic models at consecutive rotation angles
[12], already made for the iron loss calculation. This
approach takes into account the higher field harmonics on
the smallest time scale.

V. COUPLED SIMULATION

The actual calculation of the coupled field problem is best
computed using “block iteration” algorithms (Fig. 4).

Fig. 2. Reconstructed trajectories (loci) of the endpoints of the magnetic field
vector in different locations in a tooth of a partially loaded permanent-magnet
synchronous machine (PMSM).

(a)

(b)

Fig. 3. Two meshes used in the procedure to calculate the iron and
permanent-magnet eddy-current losses.

These are preferable over Newton-type methodologies [13],
as Newton algorithms require the knowledge of all time deriva-
tives, which cannot be easily expressed, and the obtained matrix
systems to be solved are asymmetric and ill-conditioned and,
therefore, require expensive solver algorithms.

VI. A PPLICATIONS

To illustrate the methodologies described above, two exam-
ples are included. At first, a PMSM is calculated using a fixed
reference frame for the magnetic field calculation [14]. Sec-
ondly, the approach for the oscillating or rotating ac fields is
demonstrated for a three-phase transformer [15].
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Fig. 4. Coupled problem computation flowchart.

Fig. 5. Magnetic field solution of the PMSM in loaded conditions.

A. PMSM

To study the dynamic performance of a 45-kW six-pole
PMSM designed for use in an electrical vehicle, a transient
coupled thermal magnetic simulation is developed. This ma-
chine is designed to have a water cooling system and contains
conductive temperature-sensitive NdFeB permanent-magnet
pieces fixed to the rotor surface. The mesh used for the mag-
netic field calculation is shown in Fig. 3. Fig. 5 represents the
magnetic field.

Two thermal models, with stator and rotor reference frame
are used in the thermal calculation (Fig. 6). They contain
appropriate contact resistance and insulation representations.
The air-gap convection parameter is determined using semi-

(a)

(b)

Fig. 6. PMSM thermal solution—stator and rotor frame model; used to update
the winding electrical conductivity permanent-magnet data.

Fig. 7. Comparison of measured and calculated winding temperature
variations in water-cooled loaded conditions (the variance coming from
redundant sensors is indicated). The coupled simulation lies closer to the
measurements.

empirical correlations [16]. The losses were determined using
the method described above.

To validate the coupled model, it was tested in different cir-
cumstances. In a first test, the machine is used as a water-cooled
generator driven by a dc motor at 1500 r/min. Its winding is con-
nected to a resistive load. All types of losses are considered in
the motor. The iron losses drop about 20% when the iron gets
hot and the permanent-magnet-induced flux is weakened. The
joule losses in the winding rise about 19% due the heating. Mea-
sured temperatures are compared to computed values (Fig. 7).

In this graph, a good agreement between measured and sim-
ulated data is found. The results of an uncoupled calculation
are plotted as well (these are situated below the coupled result),
since the increased resistivity is not taken into account, which
introduces a systematic underestimation of the losses. The vari-
ance between the coupled and uncoupled simulation is not very
large, although it represents a difference of about 4.4% for this
limited temperature rise of merely 15C. For larger tempera-
ture rises, the differences are more significant in absolute terms.
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Fig. 8. Comparison between simulated and measured temperatures in
air-cooled unloaded conditions (the variance in the measured values is
indicated).

Fig. 9. Comparison of fundamental measured and induced voltage.

In a no-load test, the PMSM is driven by the dc motor at
3000 r/min. The windings are open and the induced voltage is
measured. The water cooling is inactive. In this case, only iron
losses are present. The evolution of the registered temperatures,
along with the simulations, is shown in Fig. 8. The variation
of the fundamental measured and induced voltage is given in
Fig. 9.

The first graph indicates that the computed steady-state
temperature of the device is about 5% higher than measured.
An explanation is found in the fact that some parasitic heat
paths are neglected. Neither the heat flux through the mounting
(the motor is not perfectly insulated from the base plate on
the test bench), nor the heat flowing out of the motor through
the rotating shaft, is taken into account. A test calculation
indicates that the temperature drops to the measured level,
when it is assumed that these conductive phenomena increase
the cooling capability by 10%. For the measurements, the
stator temperature rises a bit faster in the beginning. This is
due to the convection cooling models used, becoming more
accurate when the temperature differences are more significant.
The induced voltage follows the measured value, which is an
indirect measure of the magnet temperature. An average change
of more than 5% of the magnets’ remanent field is found.

Fig. 10. Real part of the final magnetic field solution of a simulated
short-circuit test.

(a)

(b)

Fig. 11. Details of the magnetic and thermal field. (a) Field lines of the leakage
flux passing through the foil conductors in the top of the coil associated with
additional eddy currents. (b) Isothermal lines of the upper part of a coil set; on
the left the foil conductor; on the right the wire coil; the hot spot is visible in the
top of the foil pack.

B. Three-Phase Transformer

A 30-kVA transformer having 50 foil conductors in the sec-
ondary winding, which are located close to the core, is modeled
in the described way. The meshes are constructed by using adap-
tive refinement techniques. The real component of the magnetic
solution of the simulated short-circuit test is shown in Fig. 10.
Fig. 11(a) shows a detail of the leakage field.
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Fig. 12. Comparison of measured and calculated heating of the transformer
in a short-circuit situation. The temperature near the tops on the outer side is
measured optically.

The surrounding air and the air between the winding blocks is
replaced by convective boundary conditions. The thermal mesh
is extended with thin layer elements between the foils, repre-
senting the insulation layers and anisotropic materials. A detail
of the thermal solution is shown in Fig. 11(b), clearly indicating
the location of the hot spot in the top of the foil winding coil.

To validate the transient method, measurements were made
and compared with simulations. Fig. 12 demonstrates that there
is a good correspondence. The difference between the steady-
state temperature in the measurements and the simulation, as
well as the small difference in the thermal heating time constant,
are explained by the difficulty to model the natural convective
cooling in the vicinity of the coils.

VII. CONCLUSIONS

This paper has discussed manners to deal with the large
difference in time scales encountered in the simulation of
coupled electromagnetic-thermal field problems in electrical
energy transducers. The high ratio between the largest and
smallest time constants yields numerical stiffness, which would
normally require special integration methods.

However, by reworking some of the problem modeling as-
pects it is possible to separate some of the dynamic phenomena
at different time scales. In this way it becomes possible to split
up rotation or oscillation, higher order harmonics generating
losses, and the heating up of the device. To illustrate these
methodologies, the transient thermal-magnetic computation
of a PMSM and a three-phase transformer was discussed and
compared with measurements.
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