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Abstract: Nonlinear magnetic problems can be solved efficiently by applying the iterative Newton—
Raphson method in a finite-element framework. At the beginning of each nonlinear iteration. the
magnetic reluctivity and the differential reluctivity must be determined in every element of the
mesh. As a consequence. the time required for building the linear system to be solved, strongly
depends on the evaluation time of the applied material models. Moreover. the accuracy and the
smoothness of the material models affect the convergence rate of the Newton—-Raphson method.
Three methods for representing material properties are compared from a computational point of
view. The magnetisation curves of nonlinear isotropic ferromagnetic materials are commonly
approximated by cubic splines. However, it is observed that polynomials and feedforward neural
networks have also been adopted for this purpose. It is shown that these. although having some
attractive properties. should not be applied for approximating magnetisation curves. The same
holds for more complex relations, such as the anisotropic reluctivity curves of grain-oriented steel.
Although feedforward neural networks become more appealing for these types of mappings, they

do not offer a computational advantage compared with the bicubic spline representation.

1 Introduction

Within the finite element framework, nonlinear magnetic
problems are often solved using the nonlinear Newton—
Raphson iteration scheme. Therefore at each iteration, the
contribution of all elements to the stiffness matrix K and the
Jacobian matrix J must be computed, as explained in
Silvester et al. [1]. For the isotropic case. the elementary
stiffness matrix is proportional to the reluctivity © [Am/Vsl.
while the elementary Jacobian matrix is proportional to the
derivative of v with respect to the square of the flux density
B [Vs/m?]. For the anisotropic case. the reluctivity and the
differential reluctivity are second-order tensors having two
or three independent entries, depending on the dimension of
the problem. As a consequence, the time required for
building the complete stiffness and Jacobian matrices
strongly depends on the speed by which these can be
evaluated. Obviously, this is related to the mathematical
representation of the magnetic properties. Moreover, the
quality of the material model also influences the conver-
gence of the nonlinear iteration scheme, as nonsmooth
representations might cause numerical oscillations in the
convergence process.

Polynomials have since long been used for modelling
nonlinear functions. However, they fail to give suitable
approximations for strongly nonlinear functional mappings.
Carefully trained feedforward neural networks provide an
alternative in those cases. Over the past decade, the
popularity of feedforward neural networks for modelling
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nonlinear phenomena has increased. They have been
adopted for modelling magnetisation curves in Patecki
et al. [2]. In the paper, it is shown that polynomials and
feedforward neural networks do not ofter any improvement
compared with the commonly applied cubic spline inter-
polation technique from a computational point of view. It
holds particularly for the representation of the magnetisa-
tion curve of an isotropic material. but even for modelling
anisotropic properties it is not encouraged. Within this
context. the properties of leedforward neural networks,
polynomials and cubic spline interpolants are compared.

2 Material data

The models are compared for two distinct cases:

® The nonlinear magnetisation curve of an isotropic steel. It
is a smooth univariate functional mapping r=f{B%).

¢ The nonlinear and anisotropic relativity curves of a grain-
oriented steel (Fig. 1). according to Shirkoohi ez a/. [3]. Tt is
a smooth bivariate mapping v=fB. #) with 0 the
magnetisation angle [7].
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Fig. 1 Nonlinear and anisotropic reluctivity of grain-oriented steel
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For accuracy. the reluctivity is transtformed in advance by a
base-ten logarithm, followed by a normalisation of all
variables.

3  Material models

3.1 Polynomials
The nonlinear magnetisation curve v=f(B") can be
modelled by a polynomial of order N

N
z*:Za”(B:)” (1)

n=0

This polynomial is most efficiently evaluated by applying
Horner’s rule. as explained in Press ¢z /. [4]. Its evaluation
requires 2 floating-point operations (FLOPs). The model
has N+1 degrees of freedom (DOFs). The derivative of (1)
1s evaluated within 2N—2 flops. The number of flops is a
crude measure for the computation time. as it ignores
subscripting. memory traffic and other overheads while
executing a program. It is mentioned here as it gives a first
indication of an algorithm’s efficiency.

The nonlinear and anisotropic magnetisation curves
r=fB. 0) can be modelled by a two-dimensional
polynomial of order N

N N-n

Pp— ) H i

U= E E apmB™ |0 (2)
n=0 \m=0)

Tl}is polynomial is evaluated similar to Horner’s rule within
N--+4N—1 FLOPs and it contains (N + 1)}(N+2)/2 DOFs.

3.2 Cubic splines

In computational magnetics it is convenient to represent
magnetisation curves by cubic splines. Using splines avoids
the necessity of higher-order polynomials over the entire
input range. In between two successive data points or
nodes. the cubic spline is a third-order polynomial, having
coefficients that depend on the value of B-. If the spline is
evaluated using the algorithm provided by Press et /. [4], 21
FLOPs are performed. The computation of its derivative
requires 21 FLOPs as well.

Bivariate functions such as the anisotropic reluctivity
curves can be modelled by bicubic splines, as in Dierckx [5].
They can be considered as a one-dimensional cubic spline
having coefficients which are themselves cubic splines,
depending on the other dimension. Hence, their evaluation
is performed by repeatedly evaluating a set of one-
dimensional cubic splines. Five cubic spline evaluations
are required for evaluating a bicubic spline.

3.3 Feedforward neural networks

As explained in Bishop [6]. two-layer feedforward neural
networks can approximate any continuous functional
mapping arbitrary well. Among the large amount of
feedforward neural networks that can be applied for
regression purposes. the two-layer perceptron with differ-
entiable sigmoid activation functions is selected for
comparison. For both problems, this type of perceptron is
mathematically expressed as

Y,
0= qud(paB + pi) + a0 (3)
=1
and
M
= q1;9(pB + pi0+ pp) + quo (4)

J=1
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Fig. 2 Graphical interpretation of feedforward neural network

respectively, with A/ the number of neurons, pj; the first-
layer weight connecting input / with neuron j and ¢; the
second-layer weight connecting neuron ; with the output
(Fig. 2). The activation function ¢ is given by a logistic
sigmoid

1 (s)
l +e¢ >

and represents the nonlinear transformation units or
neurons in the network. Equation (3) has 3A/+1 DOFs
and is evaluated in 7M FLOPs. Equation (4) is evaluated in
9M FLOPs and contains 4M +1 DOFs. The derivative of
(3) is given by

dv M )
5= aupn )l - ola)

J=1

dla) =

(6)
—a;=ppB*+ pp
requiring 947—1 FLOPs to be evaluated.

4 Determination of coefficients

The coefficients of the polynomials in (1) are obtained by
solving an over-determined system of equations using the
least squares method, without constraints, as described in
Golub et al. [7]. Measurement errors are smoothed out
automatically. However, by applying constraints on the
shape of the polynomials one can further improve the
smoothness at the expense of a higher sum-of-squares error.
A direct method for determining the cubic spline
coefficients is explained in Press ef «l. [4]. More intelligent
algorithms allow for optimising the number and the
location of the nodes for a given set of data points. They
can be smoothed as well, as explained in Dierckx [S]. Pahner
et al. [8] present a stochastic method for smoothing splines
such that the convergence rate of the Newton—Raphson
algorithm is optimised.
The perceptron is trained by minimising the sum-of-
squares error
D
E(p.q) =Y _(th™(p.q) — tj)* (7)

d=1

]
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with respect to the network weights. Here. )" is the
network output and 7" the measured value for measure-
ment d. The sum-of-squares error represents a surface in a
multidimensional parameter space. Due to the nonconvex-
ity of the activation function the error surface is nonconvex
too. Hence. the minimisation algorithm may get trapped in
a local minimum of E. Therefore several networks are
trained and the best one is retained for the following
discussion.

5 Comparison

The polynomial and perceptron models have been deter-
mined for both data sets 1':,/‘(33) and ¢ =f(B. () without
imposing constraints on the smoothness of the curves. A
measure for the smoothness of the model, as presented in
Bishop [0]. is given by

no| Py 2

c=>> (,—m) (8)

= TN
with / the number of inputs, v the model’s output and .x; the
i-th input. Cis called the curvature of the model.

Fig. 3 shows the curvature of the computed isotropic
reluctivity curves as a [unction of the remaining sum-of-
squares error. The degree of the polynomials and the
number of neurons in the perceptrons are indicated on the
Figure. Obviously. the more degrees of freedom the lower
the sum-of-squares error and the higher the curvature.
However., for the same accuracy. perceptrons are much
smoother than polynomials. The same behaviour is
abserved for the models of the anisotropic reluctivity curves
in Fig. 4. This property makes neural network models
attractive for modelling nonlinear properties.

In Figs. 5 and 6 the comparison is performed from a
computational point of view. For both data sets, the real
time for cvaluating perceptron neural networks and
polynomials is plotted against the remaining sum-of-squares
error, with the number of neurons and the degree of the
polynomial indicated as a parameter. These timing experi-
ments have been done in MATLAB. on a HP B1000
workstation. Both Figures reveal an interesting feature. as
for the same accuracy. perceptrons require much more
computational effort than polynomials. From Figs. 7 and 8
it follows that this conclusion would not be drawn from an
analysis of the number of Hops. This is basically due to the
facts that every neuron must carry out a time-consuming
exponential function evaluation and that the code for
evaluating a perceptron is much longer than the code for
evaluating a polynomial.

On Figs. 5 and 6, the real time for evaluating a cubic
spline and a bicubic spline is also indicated. The accuracy of
a spline can be improved by increasing the number of
intervals. The spline cvaluation time is only weakly
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Fig. 6 Evaluation time of models for anisotropic magnetisation
awve as function of sun-of-squares error

dependent on the number of nodes determining the spline,
because the latter only influences the number ol compar-
isons required for finding the evaluation interval. These
comparisons involve no floating-point operations. There-
fore the evaluation time is plotted as a horizontal line. For
the univariate case, it is concluded from Fig. 5 that even the
smallest perceptron cannot be evaluated more quickly than
the cubic spline interpolant. For the bivariate case in Fig. 6,
only the smallest perceptrons seem to be competitive to the
bicubic spline from a computational point of view.
However, their use is not encouraged. as this computational
advantage only holds for the less accurate neural network
models. Obviously. the same conclusion is valid for
polynomial models.

Moreover, the quality of a model depends to a
considerable extent on its smoothness. 1t may deteriorate
or even preclude the convergence of the Newton-iteration
scheme. By imposing constraints on the curvature of the
models, as e.g. in Dierckx [5], Bishop [6]. Pahner ¢7 «l. [S]
and Vande Sande e¢7 al. [9]. it is possible to influence the
smoothness. Unfortunately, the curvature decreases to the
expense of a higher sum-of-squares error. Hence. in Figs. 5
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and 6. this causes a shift of the polynomial and perceptron
characteristics to the right. On the other hand. the cubic or
bicubic spline characteristics only slightly shift upwards.
This illustrates even more that polynomials and perceptron
neural networks are not competitive to the commonly
applied spline representations.

6 Conclusions
A comparison between polynomial. spline and perceptron
neural network models for representing nonlinear isotropic

or anisotropic ferromagnetic material properties has been
presented. The models were compared for their accuracy.
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smoothness and evaluation time. as these have a major
impact on the system building and the convergence rate of
the nonlinear Newton-Raphson scheme. Smooth models
can be obtained by imposing constraints on the models
output. For polynomial and perceptron models, this causes
a decrease m accuracy. Splines can be smoothed without
accuracy loss by increasing the number of intervals. This
has no significant impact on the evaluation time. Timing
experiments reveal that, when taking these observations into
account, polynomials and perceptron models are not
competitive to the commonly used cubic splines. from the
computational point of view.
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