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Abstract—Non-linear magnetic problems are commonly solved
by iterative methods. This paper discusses the application of the
Picard-method and the Newton-method in the context of solving
time-harmonic problems. It is shown that the overall computation
time can be decreased by initiating the non-linear solution process
using Picard-iterations and by switching to Newton-iterations as
soon as an estimator indicates that this is appropriate. The esti-
mator relies on the equivalence between the Newton-method and
the gradient based methods for minimizing non-linear multivari-
ate functions. The developed hybrid Picard-Newton method is ap-
plied for the simulation of the short-circuit operation of a 400 kW
four-pole induction motor. It is pointed out how the estimator can
be used for solving multi-harmonic problems as well.

Index Terms— Harmonic analysis, Minimization methods,
Newton-Raphson method, Non-linear magnetics

I. INTRODUCTION

NON-LINEAR quasi-static magnetic problems are gov-
erned by the equation

∇× (ν∇×A) + σ
∂A

∂t
= J , (1)

with ν the reluctivity tensor [Am/Vs], A the magnetic vector
potential [Vs/m], σ the electric conductivity [A/Vm] and J
the applied current density vector [A/m2]. Equation (1) must
be complemented with an appropriate gauge and appropriate
boundary conditions in order to determine a unique solution
[1]. For isotropic and non-hysteretic materials, the reluctivity
is a scalar non-linear function of the flux density B [Vs/m2].

In a time-domain finite element (FE) analysis, the non-
linearity of magnetic materials can be considered by applying a
time-stepping approach. However, this may result in excessive
computational efforts if only the steady state behaviour is of in-
terest. In that case, it is more efficient to perform a frequency-
domain analysis by applying a time-harmonic (TH) finite ele-
ment method, in which the magnetic vector potential A(x, t)
and the current density vector J(x, t) are represented by

A(x, t) = <{Ã(x)ejωt} (2)

and
J(x, t) = <{J̃(x)ejωt} (3)
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respectively. The governing equation (1) becomes

∇×
(

ν∇× Ã
)

+ jσωÃ = J̃ , (4)

where the variables Ã and J̃ are phasors [2], [3].
This paper presents a combined Picard-Newton scheme for

iteratively solving the non-linear problem (4) by the FE method.
The solution process is started by performing Picard-iterations.
As soon as an estimator indicates that the expected conver-
gence rate of the Newton-strategy is close to quadratic, Newton-
iterations take over the solution process. It will be shown that
this combination yields a shorter overall computation time. The
method is illustrated for the two-dimensional simulation of the
short-circuit operation of a 400 kW induction motor. It is
pointed out how this approach can be straightforwardly gener-
alized to the harmonic balance finite element method (HBFEM)
[4], [5], [6].

II. TIME-HARMONIC FE FORMULATION

The discretized magnetic vector potential writes

Ã(x) =
n

∑

i=1

Ãiϕi(x) , (5)

with n the number of phasor-valued connectors Ãi (values at
the nodes in 2D problems and circulations along the edges in a
3D problem) and ϕi the corresponding shape functions. Apply-
ing Galerkin’s method to (4), one ends up with the following
system of algebraic equations:

r̃(Ã) =
(

K(Ã) + jL
)

Ã− T̃ = 0 , (6)

with Ã the column vector of the phasor-valued connectors Ãi.
The (n× n) matrices K and L are symmetric with real-valued
entries. The column vector T̃ may have phasor-valued entries.
The non-linearity of the problem is due to the dependency of K

on Ã. In (6), one has additionally defined the residual vector r̃,
which is a non-linear function of Ã.

III. RESIDUAL APPROACH

In order to solve (6), an iterative strategy is usually applied.
The non-linear problem is numerically solved when the norm
of the residual has been made smaller than a fixed tolerance.
Below, the Picard and Newton-method are discussed.
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Given Ã0

Evaluate K0

For k = 0, 1, 2, ...

• Solve (Kk + jL) Ãk+1 = T̃

• Set d̃k ←− Ãk+1 − Ãk

• Find αk ∈ [0, 1] s.t. ‖r̃(Ãk + αkd̃k)‖ < ‖r̃(Ãk)‖
• Set s̃k ←− αkd̃k

• Set Ãk+1 ←− Ãk + s̃k

Fig. 1. Picard iteration scheme.

A. Picard-iterations

The Picard-method (Fig. 1) is obtained by successively eval-
uating the stiffness matrix Kk = K(Ãk) and solving the com-
plex system of equations (Kk+jL)Ãk+1 = T̃. For this reason,
it is often referred to as the method of successive substitution.
However, as it is not guaranteed that ‖r̃(Ãk+1)‖ < ‖r̃(Ãk)‖,
it is possible that the algorithm diverges. To avoid this, an ef-
ficient line search along the direction d̃k = Ãk+1 − Ãk is
performed, in order to determine a relaxation factor αk ∈ [0, 1]
for which ‖r̃(Ãk + αkd̃k)‖ < ‖r̃(Ãk)‖ is true. The iterate
Ãk+1 is then set to Ãk + αkd̃k. In the algorithm of Fig. 1, the
evaluation of the stiffness matrix is performed during the line
search routine [7], [8], [9].

B. Newton-iterations

In order to determine a search direction, the Picard-method
does not use any information about the differential reluctivity of
the non-linear materials. Obviously, this restricts the achievable
convergence rate of this iterative method. To improve on that,
the Jacobian J of r̃ is involved in the iteration process.

The basic idea behind the Newton-method is to set the first
order Taylor series expansion of the residual r̃ to zero. How-
ever, when working with complex variables, the Taylor series
expansion is only defined if the residual is an analytic function
of Ã. Unfortunately, in magnetodynamic problems, this is gen-
erally not the case because the reluctivity tensor depends on the
modulus of the flux density B̃, which is not an analytical func-
tion of Ã. Mathematically, this is expressed by the fact that the
Cauchy-Riemann condition

∂r̃

∂Ãre
k

=
1

j

∂r̃

∂Ãim
k

(7)

is not fulfilled [10]. Consequently, in order to use a Newton-
scheme, one has to derive the Jacobian from the equivalent real
representation of r̃, defined by

r =

(

r̃
re

r̃
im

)

. (8)

By setting

M =

(

K −L

L K

)

, (9)

A =

(

Ã
re

Ã
im

)

and T =

(

T̃
re

T̃
im

)

, (10)

Given A0

Evaluate r0

For k = 0, 1, 2, ...

• Evaluate Jk

• Solve Jkdk = −rk

• Find αk ∈ [0, 1] s.t. ‖r(Ak + αkdk)‖ < ‖r(Ak)‖
• Set sk ←− αkdk

• Set Ak+1 ←− Ak + sk

Fig. 2. Newton iteration scheme.

it follows that

r (A) = M (A) A−T . (11)

The (2n × 2n) matrix M has real-valued entries but it is non-
symmetric. The (2n × 1) vectors r, A and T have real-valued
entries.

The Newton iteration scheme is directly obtained by setting
the first-order Taylor expansion of r

r (A + d) ≈ r (A) + J (A)d (12)

to zero, with

Jij =
∂ri

∂Aj

= Mij +

2n
∑

k=1

∂Mik

∂Aj

Ak . (13)

This reveals that the (2n × 2n) Jacobian J is the sum of the
non-symmetric matrix M and a symmetric matrix N [10]:

J (A) = M (A) + N (A) . (14)

The Jacobian J is non-symmetric but it has real-valued entries.
Given the iterate Ak, one can evaluate rk and Jk and solve
the system Jkdk = −rk. In order to avoid the divergence of
the iterative process, Ak+1 is updated by Ak + αkdk, with
αk chosen in such a way that the norm of the residual strictly
decreases at each step.

The Newton-scheme is summarized in Fig. 2. As in the
Picard-scheme, the evaluation of the residual is performed in
the line search routine. Although the variables in both methods
are of a different type (real versus complex-valued), one can
observe similarity between the methods: the Newton-scheme
reduces to the Picard-scheme of Fig. 1 if the non-linear term N

in (14) is omitted. The Picard-method can therefore be regarded
as a quasi-Newton method, using an approximate jacobian that
is much faster to compute and that yields a system which is eas-
ier to solve. This fact is exploited to increase the overall speed
of the solution process.

C. Computational aspects

The system that has to be solved in the Picard-strategy is
complex symmetric and of size (n×n). For this purpose, either
the Conjugate Orthogonal Conjugate Gradient method (COCG)
[11] or a variant of the Quasi-Minimal Residual method (QMR)
for complex symmetric matrices [12] can be used. For the
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Newton-strategy, a real positive definite, but non-symmetric
system of size (2n × 2n) has to be solved. As a conse-
quence, system solvers such as the Bi-Conjugate Gradient
method (BiCG) or the Generalized Minimal Residual method
(GMRES) can be used [13]. Unfortunately, the computational
cost for applying BiCG on the real equivalent system is approx-
imately twice the one for applying COCG on the complex sym-
metric system. This favours the Picard-approach.

On the other hand, the Picard-strategy makes no use of any
information about the differential reluctivities in the elements.
For this reason, it features a lower asymptotic convergence
rate of the non-linear residual when compared to the Newton-
strategy. However, it is observed in practice that the initial con-
vergence rate of both strategies is more or less the same. More-
over, if both strategies start from the zero solution, the first iter-
ate is identical. Therefore, it is suggested to initiate the solution
process by Picard-iterations and to switch to Newton-iterations
as soon as a significantly better convergence rate can be ex-
pected. This approach is applied here and is called the hybrid
Picard-Newton approach. Below, it is outlined in which way
the analogy between the presented strategies and the gradient
based methods for minimizing multivariate functions is used
for developing a suitable estimator for the switching moment.

IV. FUNCTION MINIMIZATION APPROACH

Efficient gradient based methods for minimizing multivariate
functions F (A) rely on the second order Taylor series expan-
sion of that function. At the iterate Ak, the second order Taylor
series expansion is a quadratic surface F qm

k (s) in a multidimen-
sional parameter space:

F qm
k (s) = F (Ak) + s

T∇F (Ak) +
1

2
s
T∇2F (Ak)s . (15)

This surface is called the quadratic model here. A step towards
the minimum of the function can be found by applying an ef-
ficient line search along the Newton-direction, i.e. the solution
of the system

∇2F (Ak)dk = −∇F (Ak) . (16)

The Newton-direction is a vector which points from the actual
iterate to the minimum of the quadratic model [7], [9].

Within the context of function minimization, the Newton-
scheme of Fig. 2 is obtained as well when minimizing half the
square of the residual norm:

F =
1

2
‖r‖2 . (17)

This can be explained by taking its gradient

∇F = J
T
r (18)

and its Hessian

∇2F = J
T
J +

n
∑

i=1

ri∇
2
ri . (19)

∇2F ≈ J
T
J (if ‖r‖ small) (20)

If (18) and (20) are introduced in (16), dk equals the line search
direction of the Newton-strategy. Hence, applying the Newton-
method for solving the TH problem (4) is equivalent to mini-
mizing the multivariate function (17) with an approximate Hes-
sian. This equivalence forms the basis of a truncation error es-
timator for determining the switching moment between the Pi-
card and the Newton-method. It also reveals some interesting
features [9]:

• The approximate Hessian (20) of F is positive definite.
As a consequence, the Picard and Newton-strategy both
compute a direction, along which a line search algorithm
can find a lower value of (17).

• From (19), it follows that the smaller the residual is, the
better the Hessian approximation is. Moreover, the ap-
proximation equals the exact Hessian at the minimum of
(17). Hence, if a minimum is found, it is the only min-
imum in its neighbourhood. It is the global minimum if
the function is convex. This is not guaranteed for the gen-
eral case which is treated here. However, simulations re-
veal that, in practice, the computed minimum is the global
minimum.

• Due to the approximation of the Hessian which is ap-
plied to compute the line search direction, the Picard
and Newton-strategies are equivalent to quasi-Newton
minimization methods, featuring superlinear convergence.
However, the asymptotic convergence rate of the Newton-
strategy is close to quadratic because the Hessian is
asymptotically exact. The latter statement is not true for
the Picard-strategy.

V. BASIC TRUNCATION ERROR ESTIMATOR

A. Principle

During the non-linear iteration process, the difference be-
tween two successive approximate solutions gradually de-
creases. As a consequence, the quadratic model (15) steadily
becomes a better estimator of the function F (A), because the
truncation error of the second order Taylor series expansion is
of order O(h3). A measure of the quality of the quadratic ap-
proximation is found in the theory of trust region methods for
minimizing multivariate functions [9]. The ratios

ρk1 =
F (Ak)− F qm

k (sk)

F (Ak)− F (Ak+1)
(21)

and

ρk2 =
F qm

k+1(−sk)− F (Ak+1)

F (Ak)− F (Ak+1)
(22)

express how close the actual reduction of the function approx-
imates the predicted reduction by the quadratic model. There-
fore, ratio (21) uses the quadratic model at iterate k, while (22)
uses the quadratic model at iterate k + 1. Fig. 3 illustrates their
meaning, for a univariate function. The closer these ratios are to
unity, the more accurate the quadratic approximation is. There-
fore, their relative difference κ from one is a measure for the
validity of the quadratic model:

κ = 100×
|1− ρk1|+ |1− ρk2|

2
. (23)
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F (Ak+1)

F
qm

k+1

F

F
qm

k+1
(−sk)

F
qm

k
(sk)

F
qm

k

F (Ak)

A

Fig. 3. The meaning of ratios (21) and (22), for a univariate function F (A)
(solid line). The quadratic models are represented by dotted lines.

This quantity is called the truncation error estimator. If κ ap-
proaches zero, it is expected that the quadratic model is an ac-
curate approximation of the function in the neighbourhood of
the actual iterate.

B. Computational aspects

The computation of ρk1 and ρk2 requires the knowledge of
the Picard-step sk, the residual and the Jacobian, both in the
current and previous iterate. The individual terms in these ratios
are then computed by:

F (Ak) =
1

2
r
T
k rk , (24)

F (Ak+1) =
1

2
r
T
k+1rk+1 , (25)

F qm
k (sk) =

1

2
r
T
k rk +

(

J
T
k rk

)T
sk

+
1

2
s
T
k J

T
k Jksk , (26)

F qm
k+1(−sk) =

1

2
r
T
k+1rk+1 −

(

J
T
k+1rk+1

)T
sk

+
1

2
s
T
k J

T
k+1Jk+1sk . (27)

However, when organized efficiently, the evaluation of (24) -
(27) requires only

• the computation and storage of the non-linear contribu-
tions to the Jacobian,

• the storage of the previous residual vector,
• two matrix-vector multiplications,
• four dot-products.

In the example, it will be shown that the evaluation time of κ is
negligible when compared to the time required for solving the
linear system of equations.

VI. IMPROVED TRUNCATION ERROR ESTIMATOR

The line search algorithm yields a reduction of the step
length, when compared to the computed direction dk. As a
result, it is possible that the ratios (21) and (22) indicate a good

agreement between the actual function and its approximation,
even when this is not true for the full step. Therefore, it is sug-
gested to alter the definition of the truncation error estimator κ
in such a way that it estimates the quality of the quadratic model
if the non-relaxed step would be applied, given only the data for
the actual underrelaxed step.

Since the truncation error for the second order Taylor series
expansion is of order O(h3), one can define two scalar con-
stants c+

k and c−k from

F (Ak+1) = F qm
k (sk) + c+

k ‖sk‖
3 (28)

and
F (Ak) = F qm

k+1(−sk) + c−k ‖sk‖
3 (29)

respectively. Elaborating ratio (21), using (15), (18), (20) and
(28), yields

1

ρk1

= 1 +
c+
k ‖sk‖

3

rT
k Jksk + 1

2‖Jksk‖2
. (30)

In a next step, it is assumed that c+
k is the same for the full step.

The expected ratio ρk
d
1 for the full step can then be computed

by transforming sk into dk. From (30), it follows that

1

ρk
d
1

= 1 +
c+
k ‖dk‖

3

rT
k Jkdk + 1

2‖Jkdk‖2
. (31)

In order to recompute ρk1 for the actual step, dk is now deter-
mined by sk/αk, and the nominator in the right hand side is
divided by α3

k. After reordering, this finally yields

1

ρk1

= 1 +
c+
k ‖sk‖

3

αk

[

αkr
T
k Jksk + 1

2‖Jksk‖2
] . (32)

Comparing (30) and (32) reveals the effect of the proposed
modification on ρk1. An analogous argumentation can be fol-
lowed for ρk2, yielding

1

ρk2

= 1 +
c−k ‖sk‖

3

αk

[

−αkr
T
k+1Jk+1sk + 1

2‖Jk+1sk‖2
] . (33)

Using (32) and (33), the improved truncation error estimator κ
is computed in the same way as in (23). There is no significant
difference in the computational effort for evaluating this esti-
mator, when compared to the basic truncation error estimator.

VII. IMPLEMENTATION

For the analysis, the mathematical software libraries PETSc
(Portable Extensible Toolkit for Scientific Computing) and
TAO (Toolkit for Advanced Optimization) have been used [14],
[15]. These packages are freeware and written in C/C++. They
provide a rich environment for developing scientific applica-
tions in a single or multiprocessor environment.

VIII. EXAMPLE

A four-pole 400 kW induction motor is simulated under
short-circuit operation by applying three different methods:
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Fig. 4. Magnetic field of a 400 kW induction motor in short-circuit operation.

1) The Picard-method, using an ILU-preconditioned
COCG-algorithm for solving the associated complex
symmetric system of equations;

2) The Newton-method, using an ILU-preconditioned
BiCG-algorithm for solving the associated real, positive
definite, but non-symmetric system of equations;

3) The proposed hybrid Picard-Newton method, combining
the previous methods and applying the improved trunca-
tion error estimator.

For all methods, a cubic line search method is applied for de-
termining the relaxation factor at each non-linear iteration [9].
The triangular finite element mesh of the test problems contains
1419 nodes and 2772 elements. The magnetic vector potential
is discretized by linear nodal elements.

Fig. 4 shows how the magnetic field is pushed out of the rotor
by the induced rotor currents. For the three methods, the norm
of the residual and the relaxation factor are plotted as a function
of computation time in Figs. 5 and 6 respectively. This exam-
ple illustrates why it is advantageous to initiate the non-linear
iteration process by the Picard-method: the latter starts con-
verging earlier with respect to the computation time than the
Newton-method, although more iterations are required. Obvi-
ously, the Newton-method is more attractive when compared to
the Picard-method if the desired accuracy is high. From Fig. 5,
it follows that a significant improvement is obtained by com-
bining both non-linear methods.

The value of the proposed truncation error estimator in (23)
is plotted in Fig. 7, with and without the improvement given
by (32) and (33). The computation of this estimator involves
some extra floating point operations, which cause a slight speed
reduction, as can be observed in Fig. 5. For larger problems,
that difference would be negligible.

Initially, the estimator indicates a good agreement between
the function and its quadratic model. This is caused by the
strong underrelaxation in the first non-linear iterations, while
starting from the zero solution, in which the model behaves lin-
early. Once saturation occurs at some places of the model, the
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Fig. 5. The residual norm as a function of computation time, for the Newton-
method (dashed), the Picard-method (dotted) and the hybrid Picard-Newton
method (solid).
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Fig. 6. The relaxation factor as a function of computation time, for the
Newton-method (dashed), the Picard-method (dotted) and the hybrid Picard-
Newton method (solid).

truncation error estimator quickly increases. Further on, the es-
timator steadily decreases due to the reduction of the step size.
As this indicates that the quality of the quadratic model is in-
creasing, it is decided to switch to the Newton iteration scheme
when the estimator is smaller than a fixed value (25 % in this
case). From Fig. 6 it is obvious that this limit is the most appro-
priate here, because no underrelaxation is required for the re-
maining Newton-iterations. This example shows that the over-
all computation time by adopting the hybrid Picard-Newton ap-
proach is decreased with approximately 25 %.

IX. EXTENSION TO THE HBFEM

The harmonic balance finite element method allows the sim-
ulation of the steady state condition when multiple frequencies
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are involved. Several applications of this method have been dis-
cussed in literature [4], [5], [6]. The approach found in [4] is
directly extendible to be used in the proposed hybrid Picard-
Newton method. If nf frequencies are considered, one can de-
fine a residual

r̃(Ã) =
(

K(Ã) ? +L ? J

)

Ã− T̃ . (34)

Here, K and L are symmetric (nfn× nfn) matrices with real-
valued entries. The column vectors r̃, Ã and T̃ are of size
(nfn× 1) and have complex-valued entries. For every connec-
tor, each component of the considered frequency spectrum is
represented by a single entry in these vectors. The ? denotes
a convolution and J is the operator representing the Fourier
transform of the time derivative. The inherent non-linear sys-
tem of equations in (34) is complex symmetric and the Picard-
approach can be applied to solve it [4].

In analogy to the time-harmonic case, the Cauchy-Riemann
condition (7) is not satisfied. Therefore, an improvement of the
asymptotic convergence rate can only be obtained by introduc-
ing the Jacobian of the real-valued equivalent of r̃. Splitting up
(34) in its real and imaginary components yields the real equiv-
alent formulation given in [4], [5], [6]. The non-linear contri-
bution to the Jacobian can be obtained in the same way as pre-
sented in [10]. As a result, one can apply the Newton-method
as well for solving the non-linear problem. Analogous to the
TH case, the underlying linear system which has to be solved
here is non-symmetric and of double size. Therefore, the same
reasoning can be made as in the TH case. As a consequence,
applying the proposed hybrid Picard-Newton approach to the
HBFEM can lead to a significant improvement of the overall
computation time too.

X. CONCLUSIONS

Non-linear time-harmonic problems are commonly solved by
iterative methods, such as the Picard-method (successive substi-
tution) or the Newton-method. The Picard-method is attractive

because the time for solving the underlying linear systems of
equations is the smallest. This is a consequence of their sym-
metric nature. On the other hand, the Newton-method features a
higher asymptotic convergence rate. To make use of both prop-
erties, it is suggested to combine these methods. The Newton-
method is initiated when the actual convergence rate of the lat-
ter is expected to be close to quadratic. The switching moment
is indicated by a truncation error estimator. This estimator is
based on the equivalence of the Newton-method with meth-
ods for minimizing multivariate functions. The resulting hy-
brid Picard-Newton method is applied for simulating the short-
circuit operation of an induction motor, revealing an decrease
of the overall computation time of approximately 25 %. It is
pointed out how the same approach can be adopted for solving
non-linear multi-harmonic problems.
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