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Abstract

Transformer and machine windings with complicated shapes and winding schemes can not be consid-
ered in full detail within an overall machine model. In this paper, besides the standard solid and stranded
conductor models, specialized conductor models are developed for foil and machine windings which
may exhibit particular skin and proximity effects. The conductor models globally behave as the true
windings without requiring a full geometrical discretization or detailed winding scheme. They refine
adaptively according to local error estimates in the global model, offer smaller computational times and
are more reliable than if solid and stranded conductor models would be applied. The conductor models
appear as magnetically coupled elements in an external circuit model. The field-circuit coupled model
is conveniently represented by a coupled system of equations.

Introduction

Windings applied in transformers and rotating machine can have very complicated geometries and so-
phisticated winding schemes. Not only intentional eddy current effects aiming at forces or heat gener-
ation but also unintentional eddy current effects giving rise to local stress accumulation and hot spots
inside the windings have to be simulated accurately.

Two model scales are distinguished: themacro scale, i.e. at the global model and considering the
fundamental machine behaviour, and themicro scale, i.e. inside the winding and dealing with skin
and proximity effects with smaller wave lengths. The magnitude of induced phenomena does not only
depend on the properties of the winding itself but also on the vicinity of highly permeable materials or
moving parts and the spectrum of the applied excitation. Therefore, in general, phenomena at macro-
scale can not be decoupled from phenomena at micro-scale. The straightforward approach accounting
for micro-scale effects requires a discretization of the entire machine up to micro-scale dimensions.
This, however, yields huge models and unacceptable simulation times.

Several model reduction techniques are developed in order to introduce micro-scale effects in global
models: e.g. analytical macro-elements [7] and inner node elimination techniques [11]. They consti-
tute a-priori model reductions, which are troublesome in case of non-linear materials and may hinder
adaptive error control during finite element (FE) simulation. In this paper, we propose to approximate
the detailed geometries and winding schemes by additional discretizations for the voltage and to insert
these into the magnetic FE model. An error estimator automatically updates the multi-conductor model
during the simulation.
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Fig. 1. Three-phase foil-winding transformer: (a) external circuit model part and FE model part with magnetic
flux lines (b)t0 and (c)t0 + T=4 (U1-W2 are stranded conductors whereas R1-T2 are foil conductors).

Magnetodynamic finite element model

Eddy current phenomena are described by the partial differential equation (PDE)

r� (�r�A) + �
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@t
= ��rV (1)

in terms of the magnetic vector potentialA, the voltageV , the reluctivity� and the conductivity�.
Here, as an example, a 2D time-harmonic formulation is used:
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with A
z

the phasor of thez-component ofA, ! the pulsation andV the phasor of the voltage. This
formulation is commonly applied for devices with a translatory symmetry in thez-direction. The volt-
age drops and the currents are assumed to be perpendicular to the cross-section of the coils with the FE
model. The dependence of the voltageV (x; y) and the current densityJ

z
(x; y) on the spatial coordi-

natesx andy of the considered cross-sections depends on the applied conductor model as will become
clear in the next section. The 2D FE model of the cross-section
fe of the device is extended with an
equivalent circuit modelling the electric connections at the front and rear machine ends and the external
sources and loads [12] (Fig. 1). The restriction to 2D time-harmonic models substantially facilitates the
expressions describing the conductor models considered in this paper. However, only small modifica-
tions are required in order to apply the specialized conductor models to 3D and transient formulations
as well.

The discretization of (2) bynfe linear triangular FE shape functionsNi(x; y) yields the system of equa-
tions

(Kfe + |!Lfe) u+ f = 0 (3)

with u containing the degrees of freedom forA
z
,

Kfe;ij =
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Lfe;ij =

Z



�NiNj d
 : (5)

The load termf will be further specified in the next section.
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Conductor models

The current distribution in a conductor submitted to a time-varying magnetic field is characterized by
theskin depth

Æ =

r
1

�f��
: (6)

The skin depth depends on the conductivity� and the permeability� of the conductor material and
the frequencyf of the time-varying magnetic field. The skin depth is the thickness of the layer of a
conductive plane in which the majority of the current is concentrated. The skin depth gives an indication
of the importance of eddy current effects, even for conductors with arbitrary geometries. The dimensions
of the cross-sections of the coils, wires and bars present in the FE model are characterized by the lengths
dx anddy with respect to thex- or y-direction respectively.dx anddy are compared to the skin depth
(Fig. 2A). If one of both is considerably smaller thanÆ, the technical conductor model may neglect
the current redistributed with respect to the corresponding direction. Several conductor models are
distinguished (Fig. 3). The solid and stranded conductor models are commonly applied in FE models
and form the limit cases for very large and very small ratio’sdx=Æ anddy=Æ. Conductors that do not
carry current and expel all almost all incident flux can be modelled by impedance boundary conditions
applied at their boundaries [13]. In this paper, two novel conductor models, thefoil conductor andmulti-
conductor model, are added to the possible models for magnetically coupled conductors. The foil and
multi-conductor models enable the application of relatively small models for windings with confined
skin effect for which otherwise a large interconnected set of solid conductor models would be required.
The foil conductor model is a special case of a multi-conductor model but is treated separately because
of its direct relation to foil windings. In this section the different conductor models are described. They
are inserted into an external electrical circuit as shown in the next section.

Solid conductor model

The voltage drop applied to a massive conductor with the cross-section
sol with the FE model is con-
stant over
sol: �V (x; y) = �V sol. For the 2D models considered here, this follows directly from the
assumptions that:
� the model length is significantly larger than the characteristic length corresponding to the magnetic
behaviour within the 2D cross-section of the model;
� the differences in conductivity between conductors and non-conductors are substantial;
� the voltages are constant at the front and rear cross-sections of the conductors.

The load term of (2) due to the excited solid conductor is related to the voltage drop�Vsol by f
i
=

Qi;sol�V sol with

Qiq = �

Z

sol

�

`z
Nid
 (7)
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Fig. 2. (A) Application area of the several conductor models and (B) magnetic flux lines in a (a) stranded, (b) foil
and (c) solid conductor.
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Fig. 3. (a) Solid conductor, (b) stranded conductor, (c) foil conductor and (d) multi-conductor models.

and`z the length of the model in thez-direction. Submitted to a time-varying magnetic field represented
by thez-component of the magnetic vector potential, the solid conductor experiences a current density

Jz(x; y) =
�

`z
�V sol � |!�Az(x; y) : (8)

The total current through the conductor is related to the applied voltage drop and the magnetic field by

Isol = Gsol�V sol + |!`z

nfeX
j=1

Qj;soluj ; Gsol =

Z

sol

�

`z
d
 (9)

with Gsol the DC admittance of the solid conductor andQj;sol defined by (7). The FE model of a single
solid conductor excited by a current source with currentIsrc reads�

K + |!L Q

Q
T

�Gsol

� �
u

�V sol

�
=

�
0

�Isrc

�
(10)

with � = 1=|!`z a factor applied in order to symmetrize the block system of equations.

Stranded conductor model

In many devices, windings with a considerable number of wires, connected in series or parallel, are
used. The diameters of the wires are smaller than the skin depth according to the applied frequencies and
materials. However, the extent of the cross-section of the entire winding may exceedÆ. The treatment of
each separate wire as a solid conductor would require the geometrical details of all wires to be resolved
in the mesh. Moreover, one unknown�V sol and one integral relation of the form (9) per wire would
have to be added to the coupled system of equations. This substantially increases the size of the system
to be solved and therefore reduces the efficiency of the simulation. Instead, a modelling assumption is
introduced. AsÆ exceeds the dimension of each of the wires, the current density may be assumed to
be constant within the cross-section of each wire and, because the wires are connected in series, within
the cross-section of the entire winding. The cross-section
str of the stranded conductor with the FE
model includes all wires, insulation materials and cooling ducts. Two cross-sections of the same coil
and the FE plane but with opposite orientation, have to be treated as separate stranded conductors and
appropriately coupled through an external electric circuit as described in the next section. Eddy current
phenomena inside the winding are neglected by omitting the|!Lfe;ij coefficients in (3) for all FE nodes
i andj contained in
str. The current densityJstr is related to the currentI

str

supplying the stranded
conductor by the expression

J str =
Nstr

Sstr
Istr (11)
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with Nstr the number of turns andSstr the surface of
str. The load termf due to the excited stranded
conductor is given byf

i
= Pi;strIstr with

Pi;str = �

Z

str

Nstr

Sstr
Nid
 : (12)

The voltage drop over the entire stranded conductor is the sum of the voltage drops over each of the
wires. In the continuous model, developed here, this summation is replaced by an integral over
str
averaging the voltage drop over the cross-section of the stranded conductor:

�V str =
1

Sstr

Z

str

`z

�
J
z
(x; y)

fstr�
+ |!A

z
(x; y)

�
d
 ; fstr =

NstrSw

Sstr
(13)

with fstr the fill factor accounting for the necessary correction of the overall conductivity due to the
presence of insulation and gaps.Sw is the surface of the cross-section of a single wire. The total voltage
drop along the winding is

�V str = RstrIstr � |!`z

nfeX
j=1

Pj;struj ; Rstr =

Z

str

Nstr`z

�Sw
(14)

with Rstr the DC resistance of the stranded conductor andPj;str defined by (12). This approach yields
the stranded (or filamentary) conductor model for a winding. The model is a continuous idealization
and behaves as if the discrete number of wires were replaced by an infinite set of infinitely thin solid
conductors. This is the modelling assumption introduced by the stranded conductor paradigm. A single
stranded conductor excited by a voltage source with voltageVsrc is modelled by the block system of
equations �

K P

P
T
��Rstr

� �
u

Istr

�
=

�
0

���V src

�
(15)

where in this case the relation (14) has to be multiplied by�� in order to obtain symmetry.

A stranded conductor model with cross-section
str only models one of both winding parts of the coil
crossing the FE model. As a consequence, the voltage drop�Vstr expressed by (14) only represents
one part of the voltage drop over the entire coil. The external electric circuit model described in the next
section will connect two stranded conductor models in series representing a single coil. The voltage drop
along both stranded conductors is in general different due to different magnetic vector potentials at both
coil cross-sections. The induced voltage drops represented by|!Az in (14), however, have no physical
meaning unless they are added in which case they reflect the voltage drop induced by the time-varying
magnetic field enclosed by the coil.

Foil Conductor Model

Foil windings are applied in transformers and heating devices. A foil winding consists of a conductive
foil wound around a core (Fig. 4b). An alternating current applied to the foil conductor is redistributed
towards the tips of the conductor but not in the perpendicular direction (Fig. 4c). The insulation enables
a change of the voltage drop only in the perpendicular direction (Fig. 4d). In contrast to massive bars
and common wire windings, foil windings experience a skin effect only in the longitudinal direction
with respect to the foils (Fig. 2B).

Both the solid and stranded conductor model are not suited for simulating foil windings. In theory, the
simulation of a foil winding requires to treat the foil winding by a series connection of a large number
of solid conductor models. Since the cross-section of each foil is a small and long rectangle, the FE
discretization requires a too fine or very specialized mesh. Although the voltages along neighbouring
foils are very close, the field-circuit coupled model incorporates one unknown voltage per foil. The large
number of degrees of freedom, both in the FE model and in the external circuit, results in an inefficient
simulation.

Consider a winding ofNfoil foils, wound around a vertical core and connected in series. The cross-
section of the foil winding with the FE plane has an extent�y = y2 � y1 in the y-direction and an
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Fig. 4. (a) Foil-winding distribution transformer (rated power 30 kVA; rated voltages 400/3000 V; rated currents
43.5/5.8 A; rated frequency 50 Hz; connection Yy) (Pauwels Trafo Belgium N.V.); (b) foil winding; (c) current
density in and (d) voltage across the foils of one of the foil windings of the transformer (the foil mesh is plotted
in thexy-base plane).

extent�x = x2 � x1 in thex-direction.�y exceeds the skin depth considerably whereas�x=Nfoil is
smaller thanÆ. The specialized foil conductor model presented in this paper relies upon an additional
1D discretization for the voltage drop applied in the direction of the change in voltage drop [2]. The
voltage drop is discretized by

�V (x; y) =

nfoilX
q=1

Mq(x)vq (16)

with Mq(x) a foil shape function (FSF),nfoil is the number of FSFs andvq a degree of freedom. A FSF
has a constant value in they-direction and local support in thex-direction (Fig. 5a). The support of a
FSF is a long rectangle and thus has a similar shape as a single foil itself. A FSF, however, may overlap
several foils. The supports of the FSFs do not necessarily match the true foil geometry. The voltages
alongNfoil foils are represented bynfoil unknowns�V g. If Nfoil is large and the voltages do not vary
too rapidly along thex-cross-section of the foil winding, choosingnfoil << Nfoil offers a significant
reduction of the number of unknowns in the model while retaining a sufficient accuracy. Thefoil mesh,
i.e. the set of all FSFs, does also not coincide with the magnetic mesh. Adaptive mesh refinement can
be applied independently. The FEs are refined based on the error estimation of the local magnetic field
and the current density, yielding considerable refinement at the tips of the foils. The error estimator for
the FSFs weighs the voltage variation between two successive foil elements and invokes refinement if
that variation is too large.

The load termf is f
i
=
P

nfoil

q=1 Ziqvq with

Ziq =

Z



�

`z
NiMqd
 : (17)

a hybrid mass matrix combining the triangular shape functionsNi(x; y) and the foil shape functions
Mg(x). Since the foil are connected in series, the current in each foil is the same. Similarly as in the
case of a stranded conductor, a continuous model is applied. The constant current condition per foil is
replaced by a constant current condition along thex-direction. The surface current in the cross-section
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Fig. 5. Cross-section of the (a) foil winding and (b) multi-conductor, showing the magnetic mesh, the electric
mesh and a few electric shape functions.

of the foil conductor with anyz-plane is

afoil(x) =

Z
y2

y1

J
z(x; y)dy (18)

The current density in the foil is

J
z
(x; y) =

�ffoil

`z
�V (x)� |!�A

z
(x; y) ; ffoil =

NfoilSf

Sfoil
(19)

with ffoil the foil fill factor accounting for insulation and cooling ducts between the individual foils. The
continuous constraint on the foil current relates the surface current for all possibleyz-cross-sections of
the foil winding to the foil currentIfoil:

afoil(x) =
Nfoil

�x
I foil (20)

with �x the thickness of the foil winding. The foil current constraint is discretized by the Galerkin
weighted residual approach using the foil shape functions as weighting functions. The combination of
(18), (19) and (20) weighted by the foil shape functionMp(x) yields

|!`z

nfeX
j=1

Zjpuj +

nfoilX
q=1

Gpqvq + SpI foil = 0 ; (21)

Gpq =

Z



�ffoil

`z
MpMqd
 ; Sp = �

Nfoil

Sfoil

Z



Mpd
 : (22)

The individual foils of the foil winding are connected in series. The voltage drop along the foil winding
equals the voltage drop along a single foil averaged over the foil winding’s cross-section and multiplied
by the number of turns:

�V foil =
Nfoil

Sfoil

Z



�V (x)d
 (23)

which after insertion of voltage drop distribution in terms of the foil shape functions reads:

�V foil = �

nfoilX
q=1

Sqvq : (24)
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The FE model including a single foil winding excited by a voltage source with voltage drop�Vsrc is
represented by the block system of equations2

4 K + |!L Z 0
Z

T
�G �S

0 �S
T 0

3
5" u

v

I foil

#
=

"
0
0

���V foil

#
: (25)

The factors� and�� are inserted to preserve the symmetry of the FE formulation.

General multi-conductor model

The multi-conductor model is a generalization of the foil conductor model for windings with dimensions
in the wire’s cross-section which are of the same order of magnitude as the skin depth (Fig. 2A). The
voltage drop is discretized using more general voltage shape functionsMr(x; y) (Fig. 5b) [3]. Similarly
as for foil conductors, the condition of constant current per single wire is replaced by a continuous form.
This condition is weighted by the voltage shape functions themselves. The formulation is completely
equivalent to the formulation of the foil conductor model and is therefore not repeated here.

The electric mesh does not coincide with the magnetic mesh nor with the true multi-conductor geometry.
The consistency of the discretization, however, requires the electric mesh to tend to the multi-conductor
geometry if refinement is applied (Fig. 6). Also, the fill factor accounting for the fraction of insulation
in the winding has to converge to1. Hence, the gaps and the insulation regions disappear out of the
support of the electric mesh causing the electric mesh to become disconnected.

Circuit Model

The FE conductor models described in the previous section are embedded in an external electric circuit
together with voltage and current sources and passive circuit elements. The circuit may consist of
several disconnected parts. Aloop is a closed path through the circuit [1]. Acut-set is defined as a set
of branches which upon removal would cause the number of disconnected circuit parts to increase by 1.
A tree is a set of branches connecting all circuit nodes without forming loops. Tracing a tree through
the circuit is done by selecting branches following a priority rule which will be defined below. The tree
branches are calledtwigs, the remaining branches are calledlinks and form theco-tree. A fundamental
cut-set is formed by 1 twig and the unique set of links completing the cut-set. Afundamental loop
consists of 1 link and the unique path through the tree closing the loop. The fundamental cut-sets and
loops form maximal independent sets for the cut-sets and loops of the circuit respectively. The tree
partitioning is algebraically represented by thefundamental cut-set matrix D and thefundamental loop
matrix B containing the signed incidences of the circuit branches to the fundamental cut-sets and loops
respectively. When the twigs are ordered first, the fundamental incidences matrices have the form

D = [ I Dtw;ln ] ; (26)
B = [ Bln;tw I ] ; (27)
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where the subscripts "tw" and "ln" indicate twigs and links or the associated fundamental cut-sets and
loops respectively. A fundamental property of circuit theory is the relationBln;tw = �D

T

tw;ln [1].
Applying the Kirchhoff current law (KCL) and the Kirchhoff voltage law (KVL) to the fundamental
cut-sets and loops respectively results in the expressions

[ I Dtw;ln ]

�
Itw
I ln

�
=

�
0
0

�
; (28)

[ Bln;tw I ]

�
�V tw
�V ln

�
=

�
0
0

�
; (29)

with I and�V denoting currents and voltage drops. Because the fundamental cut-sets and fundamental
loops form linear independent sets, the relations in (28) and (29) are not over-determined as would be
the case if a Tableau analysis would be applied. The circuit theory recalled here, does not restrict to
electrical circuits. It can also be applied to e.g. magnetic and thermal circuits.

Five categories of circuit branches are distinguished based on the form of the relation between the
voltage drop and the current of the branch:

� For anindependent voltage source, the voltage drop is known a priori.
� For avoltage-driven branch, it is possible to express the voltage-current relation by

Ibr = Gbr�V br + q
br;coup

(30)

whereGbr is the DC conductance of the branch andq
br;coup

is a coupling term.
� For avoltage/current-driven branch, both expressions (30) and (31) are applicable.
� For acurrent-driven branch, the voltage-current relation is of the form

�V br = RbrIbr + p
br;coup

(31)

with Rbr the DC resistance of the branch andp
br;coup

a coupling term.
� For anindependent current source, the current is known a priori.

Branches are selected to participate to the tree in the order of priority indicated by the list above. To each
circuit part, the following procedure is applied. Theset of connected nodes collects all nodes that are
already connected by the tree tracing procedure and initially consists of one arbitrarily chosen node. The
set of adjacent branches contains all branches of which one vertex is connected. The tree is constructed
by successively selecting the adjacent branch with the highest priority. The new twig is removed from
the set of adjacent branches and its node that was not yet connected, is added to the set of connected
nodes. Adjacent branches which are incident to this node, are removed from the set of adjacent branches
whereas other branches incident to this node have to be removed. By construction, the priority of a twig
is greater or equal to the priority of all links belonging to the associated fundamental cut-set. Similarly,
the priority of a link is less or equal to the priorities of the twigs of the corresponding fundamental loop.
This procedure favours voltage-driven branches and current-driven branches to be selected as twigs and
links respectively. Voltage/current-driven branches take over the properties of voltage-driven branches
or current-driven branches depending whether they are selected for the tree or the co-tree respectively.
The exceptional cases when independent voltage and current sources show up in the co-tree and the tree
respectively, deserve a special treatment. If an independent voltage source appears in the co-tree, the
corresponding fundamental loop only contains independent voltage sources. If the KVL is satisfied for
this loop, the independent-voltage-source link can be omitted. Otherwise, the circuit problem has no
solution. An analogous reasoning applies to the cut-set associated with an independent-current-source
twig.

The circuit branches are indexed and sorted in the following order: independent-voltage-source twigs
(subscript "twv"), voltage-driven twigs (subscript "two"), current-driven twigs (subscript "twu"), voltage-
driven links (subscript "lnu"), current-driven links (subscript "lno") and independent-current-source
links (subscript "lni"). The fundamental cut-set and loop matrices are partitioned accordingly:

D =

"
I 0 0 Dtwv;lnu Dtwv;lno Dtwv;lni

0 I 0 Dtwo;lnu Dtwo;lno Dtwo;lni

0 0 I 0 Dtwu;lno Dtwu;lni

#
; (32)

B =

"
Blnu;twv Blnu;two 0 I 0 0
Blno;twv Blno;two Blno;twu 0 I 0
Blni;twv Blni;two Blni;twu 0 0 I

#
: (33)
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The zero entries at position(3; 4) in D and(1; 3) in B are due to the application of the priority rules,
e.g. because a fundamental cut-set associated with a current-driven twig can not contain voltage-driven
branches because these have a higher priority. The symmetry property of the fundamental cut-set and
loop matrices carries over to their subblocks:Ba;b = �D

T

b;a
for any subscriptsa andb.

The known voltage drops and known currents of the independent sources are collected in the vectors
�V twv andIlni respectively. The voltage-current relations are based on the positive-definite diagonal
matricesGtwo, Glnu, Rtwu, Rlno and the coupling termsq

two;coup
, q

lnu;coup
, p

twu;coup
andp

lno;coup
.

Two sets of unknowns are introduced: the voltage drops�Vtwo along the voltage-driven twigs and the
currentsIlno through the current-driven links. The currents through the current-driven twigs are

Itwu = �Dtwu;lnoI lno �Dtwu;lniI lni (34)

whereas the voltage drops along the voltage-driven links are

�V lnu = �Blnu;two�V two �Blnu;twv�V twv : (35)

The expressions (30), (31), (34) and (35) are substituted into (28) and (29) yielding a mixed formulation
for the circuit problem:�

G
�

two Dtwo;lno

�Blno;two �R
�

lno

� �
�V two
I lno

�
+

�
q
�

two;coup

p
�

lno;coup

�
=

�
�Itwo;src
�V lno;src

�
; (36)

with the positive-definite Schur complements, coupling terms and source terms

G
�

two = Gtwo �Dtwo;lnuGlnuBlnu;two ; (37)

R
�

lno = Rlno �Blno;twuRtwuDtwu;lno ; (38)

q
�

two;coup
= q

two;coup
�Dtwo;lnuqlnu;coup

; (39)

p
�

lno;coup
= p

lno;coup
�Blno;twuptwu;coup

; (40)

Itwo;src = Dtwo;lniI lni �Dtwo;lnuGlnuBlnu;twv�V twv ; (41)

�V lno;src = Blno;twv�V twv �Blno;twuRtwuDtwu;lniI lni : (42)

The symmetry of the system (36) follows from the propertyBa;b = �D
T

b;a
. The spectrum of the system

containsntwo positive eigenvalues andnlno negative eigenvalues withntwo the number of voltage-driven
twigs andnlno the number of current-driven links.

The magnetic-field, electric circuit coupling is based on this topological circuit description. Solid con-
ductors are catalogued as voltage-driven branches since (9) is of the form (30), whereas stranded con-
ductors, foil windings and multi-conductors have to be treated as current-driven branches due to the
expressions (14) and (24) which are similar to (31). The field-circuit coupled system is2

664
Kfe + |!Lfe Zfe;mc Q

�

fe;two P
�

fe;lno

Z
T

fe;mc Gmc S
�

mc;lno

Q
�T

fe;two 0 �G
�

two �Dtwo;lno

P
�T

fe;lno S
�T

mc;lno ��Blno;two ��R
�

lno

3
775
2
64

u

v

�V two
I lno

3
75 =

2
64

f
src
g
src

�Itwo;src
���V lno;src

3
75 : (43)

The conductances of the solid conductors and the resistances of the stranded conductors, foil windings
and general multi-conductors are inserted inGtwo, Rlno, Glnu andRtwu depending whether the corre-
sponding circuit branches are twigs or links and eliminated or not. The coupling matrices are denoted
similarly as in the previous section but here combine the coupling terms of all conductors present in the
FE model. The elimination of solid-conductor links, stranded-conductors twigs, foil-winding twigs and
multi-conductor twigs is equivalent to the elimination of the similar non-coupled circuit links and twigs.
The corresponding transformed coupling matrices and additional load terms are

Q
�

fe;two = Qfe;two �Qfe;lnuBlnu;two ; (44)

P
�

fe;lno = Pfe;lno � Pfe;twuDtwu;lno ; (45)

S
�

mc;lno = Smc;lno � Sfe;twuDtwu;lno ; (46)

f
src

= Qfe;lnuBlnu;twv�V twv + Pfe;twuDtwu;lniI lni ; (47)

g
src

= Smc;twuDtwu;lniI lni : (48)
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(a) (b) (c) (d) (e)

Fig. 8. (a) Geometry, (b) real and (c) imaginary components of
the magnetic flux in a single-layer stator slot at 50 Hz and (d)
real and (e) imaginary components of the magnetic flux in the
multi-conductor model at 500 Hz.
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Fig. 9. Harmonic losses in a stator
winding of an induction machine.

The field-circuit coupling scheme presented here, is substantially more complicated than more common
field-circuit coupling approaches described in literature, such as e.g. modified nodal analysis [12] and
loop analysis [6]. The topological approach proposed here, however, allows the treatment of circuit in
which voltage-driven coupled branches such as solid conductors and current-driven coupled branches
such as stranded conductors, foil windings and multi-conductors may be interconnected in an arbitrary
way. Moreover, the approach chosen here, has a rigid mathematical foundation. Writing the KCL
only for the fundamental cut-sets and the KVL only for the fundamental loops leads to the system that
is proved to be non-singular. The use of both voltage drops and currents as circuit unknowns leads
to a circuit system part which is symmetric but indefinite. If a positive definite circuit formulation is
favoured, e.g. because the FE formulation itself is also positive definite, the loops equation may be
used to eliminate the current unknowns. In that case, however, the positive definite but dense matrices
P

�

fe;lno
1
�
P

�T

fe;lno andS�

mc;lno
1
�
P

�T

mc;lno have to be added to the FE stiffness matrixKfe+ |!Lfe and the foil
and multi-conductor conductance matrixGmc. The resulting system of equations can be solved by the
Conjugate Gradient method. Due to the loss of the sparsity of these FE system matrices, however, the
iterative solver will be considerably more expensive. For symmetric indefinite matrices well-established
iterative solution techniques exist as well: as e.g. the symmetric Quasi-Minimal Residual method [5]
combined with a block-Jacobi preconditioner [4]. A multi-level solver for field-circuit coupled problems
based on this formulation has been developed as well and is described in [8].

Applications

The foil conductor model is applied to simulate the short-circuit operation of a dry-type, three-phase foil-
winding distribution transformer (Fig. 4a). The individual foils are not considered by the mesh of the
model. The secondary foil windings, each with 50 turns, are connected to additional resistors modelling
the contact resistances. The foil and wire windings are embedded in an electrical circuit model (Fig. 1a).
The magnetic field is shown in Fig. 1b and Fig. 1c. The current and voltage distributions in one phase of
the secondary windings are shown in Fig. 4c and Fig. 4d. A transformer model equipped with the novel
treatment for foil windings is compared to a conventional model considering all geometrical details and
electric connections of the individual foils by a series connection of solid conductor models. It can be
observed in Fig. 7 that the FE discretization error of the foil conductor models with 6, 11 and 21 foil
elements, converges significantly faster than the conventional model. By using the novel foil conductor
model, the computation time is reduced by a factor of 100 when compared to the conventional model.

The multi-conductor model is also applied to simulate the harmonic losses in induction machine wind-
ings [10] (Fig. 8). Since these devices are supplied by variable frequency, the relative importance of the
higher harmonic distortion increases and the additional Joule losses are not negligible. These effects
are commonly taken into account in analytical models by the frequency dependent eddy current factor
which can be provided by a finite element model of a single stator slot [9]. A leakage flux impinging
on the conductor is applied to the model by a difference in magnetic vector potential between the top
and the bottom of the slot. A conventional model considers the true geometry consisting of the conduc-
tors, the insulation and the cooling ducts. It treats the coil as a series connection of a number of solid
conductors, each with their own unknown voltage. For many cases, the multi-conductor model offers a
sufficient accuracy while avoiding an excessive amount of mesh nodes and voltage unknowns. Adaptive
mesh refinement for both the magnetic vector potential and the voltage distribution introduces additional
degrees of freedom only at places where they significantly improve the accuracy. The error indicator
determines whether the discretization error for the magnetic vector potential and the voltage distribution
is sufficiently low. For practical models, this is already attained for an electric mesh which is consid-
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erably coarser when compared to the true inner geometry of the multi-conductor system. At 50 Hz, no
significant skin effect is observed. At 500 Hz, substantial losses are introduced. The multi-conductor
model equipped with independent mesh refinement and external circuit coupling, enables the simulation
of the model for all possible frequencies by the same conductor model (Fig. 9).

Conclusions

Discretizing the detailed winding geometry itself and allowing for independent refinement of magnetic
and electric meshes results in a considerable saving of degrees of freedom and hence, computation time.
As a consequence, foil and multi-conductor models enable a faster, more convenient and more reliable
simulation of eddy current effects in windings with complicated shapes compared to common solid and
stranded conductor models. The simulation of a foil winding transformer with specialized conductor
models requires 10 times less memory and 100 times less computation time.
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