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Abstract – Motional eddy current effects due to higher har-
monic air gap fields in electrical machines are incorporated in
time-harmonic finite element machine models by a spectral de-
composition of the air gap field and the distribution of higher
harmonic components to additional rotor models. The method
is illustrated for a shaded-pole motor and a capacitor motor.

1. Introduction

Virtual prototyping of electrical machines requires the sim-
ulation of stationary operating conditions, e.g. speed-torque
characteristics. For three-phase (3ph) induction machines
(IMs), 2D time-harmonic finite element (FE) analysis attains
a sufficient accuracy for many technical models [1]. The key
point is that the relevant phenomena in both stator and rotor
vary in time at a single frequency, excitation and slip fre-
quency respectively, and hence can be resolved by a time-
harmonic simulation scheme [2, 3]. Time-harmonic simula-
tion is no longer an option if components with different har-
monic orders become important, e.g. in 3ph IMs with fault
conditions or in single-phase IMs. Turning to transient sim-
ulation is expensive and therefore not always recommended.
A time-harmonic simulation scheme accounting for both the
forward and backward rotating air gap field in single-phase
induction machines is described in [4]. In this paper, the
time-harmonic FE approach is generalised to situations with
an arbitrary set of relevant air gap field harmonics. The new
approach is generally applicable and is substantially less ex-
pensive for simulating steady-state machine operation com-
pared to the transient approach.

2. Finite element machine models

Two common approaches for simulating electrical machines
are the transient approach and the time-harmonic approach.
The transient approach consists of solving the partial differ-
ential equation (PDE)

r� (�r�A) + �
@A

@t
= ��rV (1)

with A the magnetic vector potential,� the reluctivity,�
the conductivity andV the voltage, by time stepping [5, 6].
The transient approach accounts for motional eddy currents
by the Lagrange technique: between two successive time
steps, the previous solution is azimuthally moved together

with the rotor part. Accordingly, the interface conditions
between stator and rotor are updated. The relative motion of
both motor parts can be modelled by a moving band tech-
nique [7], a hybrid FE, boundary-element approach [8], dis-
continuous finite elements [9] or a sliding surface technique
[10]. In the last case, it is advantageous to allow for non-
matching discretisations at the interface, possibly resolved
by mortar finite elements [11]. Transient methods are how-
ever too expensive when only stationary operations have to
be simulated.

For electrical machines excited by alternating current
sources and rotating at constant velocities, formulations in
frequency domain are preferred. The simplest case is when
only one frequencyf is present in the excitating voltages.
Then, one can adopt the time-harmonic formulation

r� (�r�A) + j!�A = ��rV (2)

with the phasorA related to the magnetic vector potential
A by

A(x; y; z; t) = Re
�
A(x; y; z)ej!t

	
; (3)

� the reluctivity,� the conductivity,V the phasor of the volt-
age and! = 2�f the pulsation.

For many cylindrical machines, a 2D FE model of the
cross-section of the machine, extended with an equiva-
lent circuit modelling the electric connections at the front
and rear machine ends, achieves a sufficient accuracy [12].
Then, the vectorial PDE (2) simplifies to a scalar PDE in
terms of thez-componentA

z
ofA:
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with `z the device length and�V the voltage drop between
the machine’s front and back side. The discretisation of (4)
by linear triangular FE shape functionsN i(x; y) yields the
system of equations

Ku+ g = f (5)

with u containing the degrees of freedom forA
z

,
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Fig. 2. (a) Shaded-pole motor and (b) capacitor motor.

and@=@n the normal derivative outward to
. The termsg
i

depend on the boundary conditions and vanish in case of the
homogeneous Dirichlet or Neumann boundary conditions.

3. Slip transformation

Time-harmonic simulations are remarkably accurate and ex-
tremely efficient for the steady-state simulation of devices
supplied with alternating currents. Unfortunately, account-
ing for motional effects in such simulations is not straight-
forward. Only in a very particular case, i.e., if the air gap
field is a rotating wave, it is possible to account for motional
eddy currents while keeping the classical time-harmonic for-
mulation (4). Suppose the field at a circular interface be-
tween stator and rotor equals the rotating wave

Az(�; t) = Re
n
c
�
e
j(!t���)

o
(9)

with the phasorc
�
, the wave number� and the azimuthal

coordinate� along the interface (Fig. 1). An observer at-
tached to the stator experiences the wave as a cosine rotating
at the velocity!=� along the interface. A second observer
is attached to the rotor and inherits the rotation at a constant
mechanical velocity!m. The corresponding azimuthal co-
ordinate�0 is related to� by

�
0 = � � !mt : (10)

The second observer experiences the field at the interface as

Az(�
0

; t) = Re
n
c
�
e
j((!��!m)t���0)

o
(11)

which is also a rotating wave with the same phasor and pole
pair number, but at a different pulsation!s;� = ! � �!m,
called theslip pulsation. Hence, phenomena at the stator
side induce phenomena at the rotor side at slip pulsation.
Motional eddy currents are easily incorporated in (4) by re-
placing the pulsation! by the slip pulsation!s;� for the
rotating model parts. This procedure, calledslip transfor-
mation, is equivalent to the scaling of the rotor impedances
by the slips� = !s;�=! as is commonly done in equivalent
circuit machine models. The assumption of a rotating wave
form as field distribution in the air gap is approximately true
for three-phase induction machines. Then, time-harmonic
steady-state simulation with slip transformation commonly
gives reliable results [1]. Slip transformation is however no
longer applicable in the presence of non-negligible higher
harmonic air gap fields, as for e.g. shaded-pole motors and
capacitor motors (Fig. 2).
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Fig. 3. Shaded-pole induction machine: (a) true solution and (b)
spectral decomposition of the rotor flux: magnetic flux lines (left)
and air gap magnetic flux density (right).

4. Air Gap Field Decomposition

Consider as an example the shaded-pole IM of Fig. 3a.
The alternating field generated by the main winding is ac-
complished by a phase-lagging field originating from a few
short-circuit rings distributed along the air gap [13]. The
resulting elliptical air gap field consists of a large forward
rotating and a smaller backward rotating component. Also
the third harmonic components will introduce motional eddy
currents which generate relevant torques. The Fourier de-
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Fig. 1. Slip transformation technique, illustrated for a simplified machine model.

composition of the air gap field is

u(�) =

+1X
�=�1

c
�
e
j(!t���) (12)

where in this casec1, c
�1, c3 andc

�3 are particularly im-
portant. Using the common time-harmonic machine model
and!s;1 as the pulsation in the rotor region, all harmonic
components are present in the rotor, but only the motional
eddy current effects with respect toc1 are correctly taken
into account. Obviously, the simulated currents and torques
will be inaccurate.

The extension of the time-harmonic FE method, pre-
sented in this paper, allows the effects of higher harmonic
air gap fields to be considered accurately without turning to
transient simulation. The air gap field component with wave
number� will induce eddy current in the rotor at the slip
pulsation

!s;� = ! � �!m (13)

which would be correctly taken into account if the pulsation
applied at the rotor model part is defined by!s;�. To ac-
count for the true motional eddy current effects for all wave
components individually, separate rotor models are required.

For the split-pole motor example, the relevant com-
ponents of the air gap flux with coefficientsc

�
, � =

�1;�3, are distributed towards four distinct rotor models

� (Fig. 3b). Each rotor model experiences at its bound-
ary�� a sinusoidal air gap wave rotating at the synchronous
speed!syn;� = !=�. As a consequence, the field in
�

is time-harmonic with slip pulsation!s;� = ! � �!m. To
preserve the total flux, the remaining components with co-
efficientsc

�
, � 6= �1;�3 are propagated to an additional

rotor model

�
. They influence the saturation of the rotor

teeth and generate inaccurate albeit small eddy currents in
the rotor bars. The choice of the number of additional rotor
models, the field components applied at their boundaries and
the slip frequencies at which currents are induced, are based
upon technical considerations motivated by the general ro-
tating field theory for electrical machines. This choice can
be adaptive, i.e., rotor models can be removed if their influ-
ence turns out to be negligible or added, e.g. if significant
motional eddy current effects are observed at the rotor model
hosting the set of remaining components.

5. Coupled finite element model

The air gap field decomposition is embedded in the FE
model and resolved during the iterative solution of the FE
system of equations. This strong coupled approach is neces-
sary to maintain the effectiveness of the time-harmonic sim-
ulation scheme. Consider a model consisting of one stator
model
0 andn rotor domains
p, p = 1; : : : ; n (see Fig. 4
for an example withn = 3). The stator and rotor models
share a circular interface�b in the middle of the air gap. For
each rotor domain, the slip pulsation!p = ! � �p!m is
selected according to one of the field component applied at

p, i.e., the component with pole pair number�p. A FE
subsystem as in (5), is set up for each submodel
p inde-
pendently:

�
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� �
u
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u
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f
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f
p;b

#

(14)
where the subscriptsa and b distinguish between degrees
of freedom associated with inner nodes of
p and degrees
of freedom associated with nodes at�b. Since in general
!p1 6= !p2 , the FE stiffness matrices for the rotor domains
are different although they feature the same FE mesh and
reluctivities. The subsystems (14) are collected in a block
system of equations:

�
Kaa Kab

Kba Kbb

��
u
a

u
b

�
+

�
0
g
b

�
=

�
f
a

f
b

�
: (15)

For convenience, assume all submodels have equidistant and
matching grids at�b.

An appropriate selection of rotating field components is
performed by interface conditions applied at� b:

Fu
p;b

�RpFu0;b = 0; p = 1; : : : ; n (16)

with F denoting the discrete Fourier transform andRp a
set of restriction operators such that

P
n

p=1 Rp = I . The
choices of the setsfRpg and f!pg are motivated by the
technical considerations described in the previous section.
The effect of the interface conditions (16) is illustrated in
Fig. 4. The interface conditions take the distribution ofA

z

at the stator side of�b (u0;b), transform this into harmonic
components (Fu0;b), next restrict these to a particular subset
(RpFu0;b) and finally equal this subset of harmonics to the
harmonic components of the distribution ofA

z
at one of the
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Fig. 4. Scheme of the air gap flux decomposition approach illustrating the splitting of the stator flux�0 into �1, �2 and�3.

rotor sides of�b (Fu
p;b

). The constraints (16) are collected
in

Bu
b
= 0 (17)

with the constraint equation matrix

B =

2
64
�R1F F

...
. . .

�RnF F

3
75 : (18)

The boundary integral termsg
p;b

are resolved in terms of a
set of Lagrange multipliers�:

g
b
= B

H
� : (19)

The Lagrange multipliers� are related to the Fourier coeffi-
cients of the magnetic field strengths along the rotor sides
of the interface. The matrix factorBH in (19) enforces
an appropriate spectral decomposition of the magnetomo-
tive force generated by the stator towards the different rotor
models. The FE system (15) is combined with the constraint
equations (17) and the boundary integral terms (19) result-
ing in the saddle-point problem2

4 Kaa Kab 0
Kba Kbb B

H

0 B 0
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5
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4 u
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u
b

�

3
5 =

2
4 f

a

f
b

0

3
5 (20)

The coupled system of equations (20) is solved by a spe-
cialised iterative solution technique described in detail in
[14]. The matrix blockB is never constructed in prac-
tice. Instead, the matrix-vector products and precondition-
ing steps invoked by the iterative solver apply Fast Fourier
Transforms forF andF �1 and restriction operations forRp.
This approach with air gap field decomposition is easily gen-
eralised to boundary element models [15], to 3D FE models
and to harmonic balance FE formulations [16, 17]. The re-
striction of equidistant and matching discretisations at the
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Fig. 5. Outer iteration accounting for ferromagnetic saturation at
an additional rotor model
BH.

interface�b can be loosened by applying non-equidistant
Fourier transforms and mortar FE techniques [11] respec-
tively. This is, however, disadvantageous for the efficiency
of the simulation scheme since the Fast Fourier Transform
algorithms can not longer be applied forF andF �1. Solv-
ing (20) for the shaded-pole induction machine example im-
mediately results in the flux in all rotor model parts
p and
the stator model part
0 (Fig. 3).

6. Ferromagnetic saturation

The air gap flux decomposition approach is a spectral super-
position technique. In order to incorporate non-linear effects
such as ferromagnetic saturation, an outer non-linear itera-
tion is set up. Between two linear steps, the true solution is
reconstructed by combining the solutions of all rotor model
parts at an additional rotor model
BH (Fig. 5). In order to
reduce the cost of determining the new set of reluctivities,
only the partial solutions corresponding to a reduced set of
rotor modelS, e.g. those with the largest amplitudes, are
selected (onlyu1 andu2 in Fig. 5). After inverse Fourier
transformation, the true solution for the rotor field at a num-



ber of time instants is obtained:

uref(x; y) =
X
q2S

u
q
(x; y)ej!qt : (21)

For each time instant, a reluctivity pattern is evaluated ap-
plying the BH-characteristic of the ferromagnetic material.
The reluctivity pattern is averaged in time and copied to all
rotor models and defines the linearisation point for the next
step of the outer iteration. This procedure neglects the vari-
ation in time of the reluctivity. This can be incorporated in
a multi-harmonic FE approach [16] but is technically irrele-
vant for the models considered here.

7. External circuit coupling

To obtain a reliable 2D FE machine model, the influence of
additional impedances representing stator end-windings, ro-
tor end-bars, rotor ring, external sources and loads has to be
taken into account [12, 1]. If a moving rotor is submitted to
an air gap field consisting of components with different har-
monic orders, the currents in the rotor bars or windings will
contain components at the corresponding slip frequencies.
Similarly as for the FE rotor models, the circuit parts con-
nected to the rotor have to be considered for each harmonic
component of currents and voltages separately. Inductances
and capacitances present in the rotor circuits have to be ad-
justed according to the slip frequency. Especially, the skin
effect in the rotor ring causes component at higher slip fre-
quencies to experience a considerably higher resistance. The
field-circuit coupling scheme used for the simulation of the
technical models is described in detail in [18] and results in a
few circuit equations added to the system of equations (20).

8. Shaded-pole induction machine

The magnetic flux lines computed for the shaded-pole in-
duction machine example clearly reflect the wave numbers
of the individual rotor fields (Fig. 3). The major compo-
nents in


�
are the fifth harmonics. From the magnitude of

the solution in

�
, one can decide to insert additional rotor

models, e.g., to consider motional eddy currents with respect
to c5 andc

�5. The external circuit contains a voltage source
exciting the main winding, impedances modelling the end-
windings, end-bars and rotor ring and short-circuit connec-
tions for the shading rings. Significant saturation is observed
at the stator bridges.

9. Capacitor motor

The air gap flux decomposition technique is applied to a ca-
pacitor motor (Fig. 2b). The main winding is fed by a 50 Hz
alternating current supply and generates an alternating flux
in the air gap. This flux is augmented by a flux generated
by an auxiliary winding which is put in the quadrature axis
with respect to the main winding and is connected to the
same supply through a capacitor. As the additional flux is
detuned both in space and time, the total air gap field is el-
liptical. The fundamental forward and backward rotating
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Fig. 6. Plot of the magnetic flux lines att0 andt1 of a capacitor
motor operating at 1500 rotations per minute.

air gap flux components, i.e., those with pole pair numbers
1 and�1, produce the most important torque components.
The air gap field components with pole pair numbers3 and
�3 also induce significant eddy current effects. Especially
for velocities close to the corresponding synchronous speeds
1000 rpm and -1000 rpm, these effects will influence the
generated torque. The use of an external circuit coupling is
indispensable to model the voltage excitation, the phase shift
between main winding and auxiliary winding applied by the
capacitor and the additional impedances modelling the end
parts and connections of the stator windings and the rotor
squirrel cage outside the 2D FE model. Four rotor mod-
els are considered:
1 for the forward rotating field with
pole pair number 1,
2 for the backward rotating field with
pole pair number -1,
3 for the forward rotating field with
pole pair number 3 and
4 for all remaining air gap field
components. The applied slip pulsations are!1 = ! � !m

at 
1, !2 = ! + !m at 
2, !3 = ! � 3!m at 
3 and
!4 = ! + 3!m at
4. Hence, only motional eddy current
effects with respect to the rotating air gap field components
with orders�1 and�3 are correctly taken into account. In
analogy to three-phase induction machines, this simplication
is acceptable. If the rotor model
4 hosting the remaining
air gap harmonics would reflect a significant e.g. 5th order
component, one can decide to add additional rotor models.
In Fig. 6, the magnetic flux is plotted for the fundamental
forward and backward rotating components at two instants
of time t0 andt1 wheret1 is a quarter of a period shifted
in time fromt0. The flux patterns show the alternating true
rotor field�0 and the rotating rotor fields�1 and�2. The
spectrum of the air gap flux indicates the importance of the
higher harmonic air gap fields (Fig. 7). The capacitor motor
model is used to compute the stationary speed-torque char-
acteristic (Fig. 8). The characteristic clearly illustrates the
effect of the third harmonic air gap field around 1000 rpm.
This phenomenon is not correctly taken into account by clas-
sical time-harmonic FE models. Transient simulation incor-
porates the phenomenon but is substantially more expensive
than the simulation scheme proposed here.
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10. Conclusions

Inexpensive time-harmonic finite element simulation of
electrical machines incorporating higher harmonic air gap
field effects is made possible by spectrally decomposing the
air gap field and distributing the higher harmonics to differ-
ent rotor models. The models accounts for ferromagnetic
saturation and external circuit coupling. The simulations of
a shaded-pole induction machine and a capacitor motor re-
veal the influence of the backward first harmonic and the
higher harmonic air gap fields and illustrate the convenience
of the approach for simulating steady-state operating condi-
tions of rotating electrical machines.
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