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Abstract – For anisotropic materials, the vectors representing the
magnetic field and the flux density are not parallel with each other.
When measuring the magnetization along a direction making an
angle á with the magnetic easy axis, by means of a single sheet
tester, only the component of B projected on that direction is
measured. It is impossible to deduce the angle between B and H
from such measurements. For ferromagnetic materials having a
Goss-texture, like most transformer steels, the paper demonstrates a
way to compute this angle a posteriori, by the combination of
measurements with a physical anisotropy model.

I. INTRODUCTION

It is customary in computational electromagnetics to
directly implement material characteristics under the form
under which they are given by the steel factories. As the
measurements of such characteristics involve generally only
scalar quantities, their implementation as such in a magnetic
field finite element program constitutes a 'de facto'
generalisation, which is not backed by any arguments nor
even mentioned. Measurements give only a partial view on
the complex behaviour of matter (and in particular that of iron
and steel). They need therefore to be interpreted in the context
of the mechanisms in play at the microscopic level. The
purpose of this paper is to propose such an interpretation in
the case of the analysis of the anisotropy of laminated steels.

Single strip testers measure the components of both the
magnetic flux density B [T] and the magnetic field strength
H [A/m] along one fixed direction in a thin sheet of material.
They can be used to assess the anisotropy of the material, by
measuring the magnetization curves of a series of small strips,
cut out of a metal sheet under various angles. The

reluctivity ν [Am/Vs]

B

H
=ν    , (1)

depends non-linearly on B. Fig. 1 shows the measured
reluctivity curves for a conventional grain-oriented (CGO)
steel, along several directions with respect to the rolling
direction [7,8].

II. GOSS-TEXTURE

The curves plotted in Fig. 1 reveal the Goss-texture of the
silicon steel. Silicon steel, mainly composed of cubic iron
crystals, can be given a Goss-texture by an appropriate rolling
process under specific conditions [3,6]. A silicon steel sheet
features a Goss-texture if, for all crystals, the <001> axis
coincides with the rolling direction and the {110} plane is
parallel to the surface of the sheet (Fig. 2). From Fig. 1, it
follows that the material is the most easily magnetized along
the rolling direction (RD), while it is the hardest to magnetize
at an angle of 54.7 ° with respect to the RD. This
phenomenon is explicable by more thoroughly considering
the magnetization process.

III. MAGNETIZATION PROCESS

All ferromagnetic materials are characterized by the
presence of magnetic domains, in which the material is
magnetized up to saturation magnetization Ms. For iron,
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Fig. 1: The reluctivity curves for conventional grain-oriented steel, 

under various angles with respect to the rolling direction. 
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Fig. 2: Definition of a Goss-texture, with the rolling direction
(RD) and the transverse direction (TD).



Ms = 1.71⋅106 A/m [1]. If no external field is applied, these
domains are randomly distributed with their magnetization
vector along one of the preferred easy axes <100>, <010> or
<001>. When the external field is increased slightly, the
domains that are aligned in a direction close to that of the
applied field start growing. At moderate fields, the domains
suddenly and irreversibly rotate towards the easy axis that is
the closest to the applied field. Once they are all parallel, i.e.
above the knee of the magnetization curve, they rotate
reversibly towards the applied field [1,2,3]. The latter process,
also called coherent rotation, is described in terms of
anisotropy and field energies. It explains the behavior
observed in Fig. 1 at fields above 1T.

IV. ANISOTROPY AND FIELD ENERGY

The magnetization sM
r

[A/m] within a domain tends to
align with one of the easy axes of the crystal. Each deviation
from this equilibrium state corresponds to an increase of
energy, which is due to the intrinsic anisotropy of the crystal.
For cubic crystals, the anisotropy energy Ea [J/m3] is given by
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with γ1,γ2 and γ3 the direction cosines of sM
r

 in the
crystallographic coordinate system [7]. K0 is an arbitrary
constant. K1 and K2 are the anisotropy constants. In case of a
cubic iron crystal, these are K1 = 0.48⋅105  J/m3 and
K2 = 0.05⋅105   J/m3 [1]. On the other hand, if an external field

H
r

 is applied, sM
r

 tends to align with it. The corresponding
energy Eh [J/m3] is the so-called field energy

HME
rr

⋅µ−= s0h    . (3)

The process of coherent rotation of the domains can be
considered as a competition between the anisotropy

energy (2) and the field energy (3): sM
r

 stabilizes in a
direction for which the total energy is minimal.

For silicon iron having a Goss-texture, (2) and (3) simplify
into

( )θ−θ= 221
a sin34sin

4

K
E (4)

and

( )θ−αµ−= coss0h HME    , (5)

with α the angle between the field H
r

 and the RD, and θ the

angle between sM
r

and the RD. The anisotropy energy (4) is

plotted in Fig. 3. Obviously, θ = 54.7 ° corresponds to a
maximum of Ea. The field energy (5) is plotted in Fig. 4 for
two values of H and α.

Figs. 5 and 6 show the total energy at low and high values
for θ respectively. A cross indicates the location of the local
minima. From these figures, it may be concluded that the
magnetization vector takes up a position close to an easy axis,
either θ ≅ 0 ° or θ ≅ 90 °, for fields up to 4000 A/m.

V. HYBRID MODEL

The hybrid method works in two steps. The direction of the
magnetization M is first determined for a fixed direction of H,
by means of the previous discussion. If α < 54.7 °, the
minimum of Ea + Eh at low values of θ is determined. Else, the
minimum for high values of θ is determined.
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Fig. 3: The anisotropy energy for Goss-textured iron.
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Fig. 4: The field energy for Goss-textured iron (α=30,60).
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Fig. 5: The total energy for Goss-textured iron, at low θ (α=30,60). 
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Fig. 6: The total energy for Goss-textured iron, at high θ (α=30,60). 



The second step consists in extracting the amplitude of M,
knowing its direction, from the single strip tester
measurements. This is done as follows. The flux density B is
related to the applied field H and the magnetization M by:

( )MHB
rrv

+µ= 0    . (6)

Fig. 7 indicates how (6) is related to the single strip tester
setup. By projecting (6) onto the direction á of the applied
field, an expression for the amplitude of M is obtained:

( )θ−α

−
µ

=
cos

0

meas H
B

M    . (7)

Subsequently, the components of B are obtained by projecting
(6) on the RD and the TD:
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with β the angle between B and the RD.

VI. RELUCTIVITY TENSOR

Using the previously presented hybrid approach, it is possible
to compute the two components of B and hence the reluctivity

tensor. If this symmetrical second order tensor is considered
in its principal coordinate system, it has zero off-diagonal
entries [4]. For this application, the RD and the TD are the
principal axes of the tensor, as B and H are parallel in these
directions. As a consequence
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with

β
α

=ν
β
α

=ν
sin

sin

cos

cos
TDRD B

H

B

H
(10)

for the specified measurement point.

VII. DATA SET

Now, the analysis is applied to an empirical data set, which
matches the observed anisotropic behavior. For that, it is
supposed that the Fröhlich-Kennely relation gives the shape
of all magnetization curves [1,3]:

H

H
MM s ζ+

ζ
=

1
   . (11)

Depending on the magnetization angle, the flux density is
multiplied by a factor, which expresses the fact that the
magnetization is the easiest in the RD, that it is harder for the
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Fig. 7: The RD, H, M and B within the measurement setup. 

 

Fig. 8: The magnetization curves applied to explain the model. 

Fig. 9: The direction of B, for the data of Fig. 8.

Fig. 10: The amplitude of B, for the data of Fig. 8.



TD and that it is the hardest for α = 54.7 °. Moreover, the
analysis is performed for higher fields than those used for
measuring Fig. 1, in order to demonstrate the high field
characteristics. The applied B(H,θ) model is plotted in Fig. 8,
with ζ = 2⋅10-4.

VIII. ANALYSIS

For the data set of Fig. 8, the computed direction β and the
resulting flux density B are shown in Figs. 9 and 10
respectively. Obviously, Fig. 9 shows that for low fields H,
the flux density vector stays close to the RD or the TD,
irrespective of the field direction α. On the other hand, for
higher fields, H and B tend to align. This is in correspondence
with the theory of magnetization [1,2,3].

Fig. 10 reveals that, for a constant H, the actual amplitude
of B does not behave like its measured component. The
discontinuity which occurs for α = 54.7 ° indicates that the
total energy function has two local minima for low fields.
This reveals an interesting feature, as B may point in two
different directions for that angle. Hence, B must feature
different behavior for right-turning fields than for left-turning
fields, once α passes 54.7 °. The measurements with a single
strip tester do not allow analyzing that type of behaviour.
However, if Fig. 9 and Fig. 10 are combined, with H and α as
a parameter, it can be observed that there is a large empty
region in the B-β-plane (Fig. 11). In order to flip over the
54.7 °-direction, B must follow the contour of the empty
region in a particular way. Fig. 11 also reveals how the field
behaves, if the flux density rotates in space with constant
amplitude. The result, for |B| = 1.7 T is plotted in Fig. 12, but
it can be generalized to arbitrary B-loci in space. This will be
considered in future research.

CONCLUSIONS

Single strip testers only measure the components of B and H
in a single direction. Hence, in order to assess the magnetic
anisotropy of a material, the magnetization curves must be
measured in various directions. However, this does not yield

any information about the instantaneous angle between
B(t) and H(t). For Goss-textured ferromagnetic materials, a
hybrid method is described that allows computing this angle.
The direction of M is determined by minimizing the sum of
anisotropy and field energy. Its amplitude is subsequently
obtained from the measurements. The computation of the
reluctivity tensor is then straightforward. The method is
applied to an empirical data set. It is demonstrated that
anisotropy may lead to a different behavior against low fields
rotating in opposite directions. The method permits to
determine the B-locus in space, given a H-locus and vice
versa.
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Fig. 12:  The resulting H-locus, when B rotates with constant 
amplitude 1.7 T , for the data of Fig. 8. 
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Fig. 11:  Lines of constant α in the B-β  plane, with parameter H, for 
the data of Fig. 8. 

 


