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Machine Models

Herbert De Gersem, Kay Hameyer, Thomas Weiland

Abstract|In 2D �nite element machine models, the skew-

ing of the stator or the rotor is commonly taken into account

by considering several cross-sections at di�erent axial posi-

tions, assembled by electrical circuit relations. Since the

problem size scales with the number of slices, the computa-

tional cost rises signi�cantly. In this paper, skew is modelled

more accurately and more conveniently by imposing spectral

interface conditions incorporating skew factors at a circle or

an arc in the air gap.

Index terms|Rotating machines, Skewing, Coupled prob-

lems, Finite element methods, Fourier transforms.

I. Introduction

S
KEW is applied to electrical machines in order to

reduce undesirable e�ects such as cogging torques,

higher-harmonic air-gap �elds, torque ripple, vibrations

and noise. The squirrel cage of an induction machine is

skewed as to �lter out the �rst signi�cant �eld harmonics

due to the slotting of the machine. In permanent mag-

net synchronous machines, commonly, cogging torques are

reduced by skewing the stator slots. The skewing of a cylin-

drical machine induces an electrical �eld in the azimuthal

direction. This can lead to additional currents, e.g. if the

rotor bars of an induction machine are not suÆciently in-

sulated with respect to the lamination.

The skewing destroys the typical translatory symmetry

of a cylindrical machine. Commonly, multiple slices, each

of them represented by a 2D �nite element (FE) model,

are connected in series in order to account for the skew-

ing. This approach substantially increase the computa-

tional cost of FE machine simulations. In this paper, the

skew of the machine is modelled by an interface condition

incorporating analytical skew factors at a circle in the air

gap. The method alleviates the need for multiple slices in

linear FE machine models. In non-linear FE models, the

method results in a substantial reduction of the number

of slices necessary to achieve a prescribed accuracy. The

method with skew interface conditions applies to all cylin-

drical machines types, both stator or rotor skewing and

both time-harmonic and transient models.
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II. 2D FE Machine Models

The behaviour of many cylindrical electrical machines

can be simulated by 2D magnetodynamic FE models cou-

pled to electric circuits representing external excitations

and loads. The mechanical motion is taken into account

by computing the torque exerted on the rotor, e.g. by

the Maxwell stress tensor method, and solving the motion

equation. In this paper, for convenience, the magnetody-

namic formulation with skew interface conditions is devel-

oped for the time-harmonic case. The transient and multi-

harmonic formulations are completely analogous. The 2D

magnetodynamic partial di�erential equation in term of

the z-component Az of the magnetic vector potential is

discretized on a triangulation of a cross-section 
fe of the

machine with an x� y-plane. For convenience, the formu-

lation is written in terms of a 
ux potential ' = `sAz with

`s the length of the device or the considered slice:
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with � the reluctivity, � the conductivity, ! the pulsation,

�V sol the voltage drop along a solid conductor, Nstr the

number of turns, Sstr the cross-sectional area and Istr the

current applied to a stranded conductor. Underlined sym-

bols indicate phasor quantities. The discretization of (1)

by linear triangular FE shape functions Ni(x; y) yields the

system of equations

Ku = f (2)

with u
j
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The voltage drops �V sol and currents Istr are considered

as unknowns in an electric circuit model which includes the

external sources and impedances. The �eld-circuit coupling

scheme adds a few algebraic equations to the FE system as

described in [1].

III. Multi-Slice 2D Machine Models

A 2D FE model as represented by (2) is justi�ed by the

translatory symmetry which is typical for many electrical

machines. If, however, the stator slots, the rotor slots or the
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Fig. 1. FE machine models of a cylindrical machine with skewed
rotor with multiple slices distributed equidistantly or according to
Gauss points.

permanent magnet parts are skewed along the axis of the

device, the accuracy of such model may become trouble-

some (Fig. 1). Several approaches to overcome these prob-

lem have been reported in literature. The most popular

method is the multi-slice technique originally developed by

Piriou and Razek [2]. The machine with axial length `z is

cut into nsl slices of length `s = `z=nsl, each of them being

represented by a conventional 2D FE model. The currents

through the stator windings and the rotor bars are forced

to be the same in each of the slices by the �eld-circuit cou-

pling scheme (Fig. 1b). Considering several slices can be

done for the skewed part only [2] or for the entire device [3],

[4], [5]. In [4], it has been shown that a distribution of the

slices according to a Gauss point distribution o�ers a bet-

ter convergence of the skew discretization error compared

to the classical equidistant distribution (Fig. 1c). Skewed

rotor bars in induction machines give rise to interbar cur-

rents which are not taken into account by the multi-slice

models so far. They are considered in the electrical network

by additional resistors put in between the individual slices

[6]. The skewing of one of the motor parts also causes the

magnetic vector potential not to be aligned with the axis

of the machine as is assumed by 2D FE machine models.

This e�ect is commonly neglected in 2D multi-slice models.

In [7], the possibility of explicitly assigning the direction in

which the magnetic vector potential is assumed to be in-

variant, along the axis or along the skewed conductors is

studied. Dependent on the operation mode of the machine

(locked rotor, no-load, load), a 2D, a 2D-3D or a full 3D

model can be chosen. All multi-slice techniques have in

common that the computation time increase, in the op-

timal case, linearly with the number of slices considered

in the model. A combination of FE models with an an-

alytical model accounting for the skew is proposed in [5].

The approach solves the multiple slices separately, which

avoids the scaling of the FE model size with the number of

slices. The skewing of the machine is taken into account by

appropriately combining the coupled inductance matrices

extracted from the FE solutions. In this paper, fully cou-

pled FE machine models are considered. The number of

slices required to achieve a suÆciently accurate description

of the skewing is reduced by a particular kind of interface

conditions applied to a circle in the air gap.

IV. Skew Interface Conditions

Analytical machine models are constructed based on ro-

tating �eld theory (Fig. 2). The magnetic �eld generated

by the stator windings in the air gap is written as a sum
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Fig. 2. Scheme of the method with skew interface conditions.

of rotating waves. The skewing of e.g. the rotor is taken

into account by skew factors applied to the rotating-�eld

coeÆcients [8]. The skew factors act as a �lter to the

air-gap �eld. The application of such skew factors in a

post-processing step to a FE solution does not account for

stator-slot aliasing e�ects [5]. Here, the skew factors are

introduced in the FE model itself. A fully coupled system

of equations is assembled. It would also be possible, albeit

ineÆcient, to iterate between two FE models, one for the

stator and one for the rotor, while applying skew interface

conditions in order to propagate the air gap �eld between

both FE model parts.

The stator and rotor model parts are disconnected at a

circle or, in case of partial machine models, an arc �st = �rt
in the air gap. At this interface, two independent vectors

of FE degrees of freedom, ust and urt are de�ned. The re-

maining FE degrees of freedom in both stator and rotor,

are gathered in u�. A 2D FE machine model is constructed

as described in Section II. Note that this FE system con-

sists of two non-coupled blocks of equations. The vector of

degrees of freedom is

u =
�
u� ust urt

�T
(4)

and contains super
uous degrees of freedom. The FE pro-

cedure so far, assumes homogeneous Neumann boundary

conditions at �st and �rt. The skewing of the rotor with

respect to the stator is introduced as an interface condition

between �st and �rt. The magnetic �eld at �rt is obtained

by averaging the �eld at �st. The continuous skew interface

conditions read

'
rt
(�) =

1

��skew

Z +��skew=2

���skew=2

'
st
(� +  ) d ; (5)

where ��skew is the skew angle. This expression is dis-

cretized at �st and �rt following the Galerkin procedure.

The potentials '
rt
and '

st
are written in terms of the FE

shape functions Nrt; q and Nst; w restricted to �rt and �st
respectively:

'
rt

=
X
q

urt;qNrt;q(�) ; (6)

'
st

=
X
w

ust;wNst;w(�) : (7)

The skew interface condition (5) is weighted by the shape
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functions of one of both sides, e.g. by Nrt;p(�), yielding

Murt = Sust (8)

with

Mpq =

Z 2�

0

Nrt;p(�)Nrt;q(�) d� ; (9)

Spw =

Z 2�

0

Z +��skew=2

���skew=2

Nrt;p(�)Nst;w(� +  )

��skew
d d� :

The discretrized interface conditions serve as additional

equations for the FE degrees of freedom, Gu = 0, with

G =
�
0 S �M

�
(10)

and are inserted as constraint equations in a saddle-point

model �
K G

T

G 0

� �
u

v

�
=

�
f

0

�
(11)

with v a set of Lagrange multipliers. The terms GT
v rep-

resent the tangential magnetic �eld strengths weighted by

the FE shape functions Nrt;p(�) at �rt and �st.

The construction of the matrices M and S may be cum-

bersome if the FE meshes at �rt and �st do not match, are

not equidistant or do not add up to the skew angle ��skew.

Here, instead, the skew interface conditions are discretized

by a spectral technique. The magnetic �elds at �st and �rt
are related to the Fourier coeÆcients

cst = Fust ; (12)

crt = Furt (13)

with F the discrete Fourier transformation (Fig. 2). In

the spectral domain, the skew interface conditions (5) read

crt;� = �skew;�� cst;� with

�skew;�� =
sin

�
���skew

2

�
���skew

2

(14)

the skew factor for the component with harmonic order �,

analogous to the rotating �eld theory. The skew interface

conditions are represented by the constraint equation Bu =

0 with

B =
�
0 �skewF �F

�
(15)

and constitute, together with the FE model, the saddle-

point problem�
K B

H

B 0

��
u

�

�
=

�
f

0

�
; (16)

where � is a vector of Lagrange multipliers.

Solving (11) or (16) is more expensive than solving a 2D

FE model without skew interface conditions which is the

main disadvantage of this formulation. If the FE mesh is

equidistant at �st and �rt, it is recommended not to con-

struct B and BH , but to apply (inverse) Fast Fourier Trans-

forms and explicit scaling operations for FH , F and �skew.

Based on such matrix-free techniques, powerful domain-

decomposition-type iterative solution approaches are pro-

posed in [9]. The increase of the simulation time is typically

only 10%. This additional complexity is acceptable since

skew interface conditions are expected to reduce the num-

ber of slices required to obtain a prescribed simulation ac-

curacy. This technique with skew interface conditions can

easily be combined with analytical air gap element tech-

niques [10], [11], air gap 
ux splitting approaches [12] and

sliding surface methods [13].

V. Skew Discretization Error

The relative skew discretization errors are de�ned by the

relative di�erences between the discrete skew factors intro-

duced by the multi-slice model and the exact skew factors.

In [4], it was shown that distributing the slices according to

a Gaussian integration scheme results in a better relative

skew discretization error compared to the case where the

slices are distributed equidistantly. The skew discretization

errors for the skew interface conditions developed here, do

not depend on the number of slices. They are only deter-

mined by the FFTs and hence, by the number of points at

the skew interface.

The skew discretization errors as de�ned above, how-

ever, are only indications of the error introduced by multi-

slice techniques. A better qualitative comparison of skew

modelling techniques is described in the following. Taking

multiple slices corresponds to discretizing the model in the

z-direction. The classical multi-slice technique considers

nsl equidistantly distributed slices, each of them neglecting

the skew, which corresponds to nsl constant FEs along the

axis of the device. The distribution of nsl slices following a

Gauss distribution corresponds to the use of a spectral dis-

cretization technique with the Legendre polynomials up to

degree nsl acting as shape functions [14]. It is known that

for spectral elements, the discretization error decays at ex-

ponential rather than at polynomial rate in case of smooth

excitations and geometries. The geometry and excitation

of a typical electrical machine indeed vary smoothly with

respect to the z-direction. The technique with skew inter-

face conditions is also a spectral element technique, but

with trigonometric shape functions. For linear models, it

is exact up to the FFT discretization error. A single-slice

FE model with skew interface conditions obviously does

not account for axial variations of the ferromagnetic satu-

ration. Skew interface conditions can be applied in com-

bination with the multi-slice approach. Then, FE models

with skew interface conditions are expected to achieve at

least the same accuracy as the approach with Gauss points,

also for non-linear models. In practice, the same accuracy

is already obtained with a substantially smaller number of

slices than for the other approaches.

VI. Application

The 2D formulations with multiple slices and with skew

interface conditions are applied to a time-harmonic induc-

tion machine model (Fig. 3). The 4-pole 45 kW machine

has 48 stator slots and 36 rotor slots. The machine is sim-
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Fig. 3. 3-slice model of an induction machine.
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Fig. 4. Magnetic vector potential distribution at the stator side �st
and the rotor side �rt of the skew interface contour in the air gap.

ulated at full load and at its nominal speed of 1472.7 rpm.

Three formulations are compared: the classical technique

with multiple slices equidistantly distributed along the ma-

chine's axis, the improved multi-slice technique distributed

slices according to Gauss points and the new technique ap-

plying skew factors at an interface in the air gap. The

machine has closed rotor slots at which substantial ferro-

magnetic saturation is observed. The stator end-windings,

the rotor rings and the three-phase voltage source are mod-

elled by an external electrical circuit. The �eld-circuit cou-

pling scheme is also used to de�ne the appropriate connec-

tions between the stator windings and rotor bars of di�er-

ent slices. The magnetic �eld distributions at the stator

side �st and the rotor side �rt of the skew interface con-

tour are shown in Fig. 4. The convergence of the error

is compared for the torque (Fig. 5). The distribution of

the slices according to Gauss points o�ers a better con-
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Fig. 5. Convergence of the error on the torque for the classical multi-
slice technique (Æ), the multi-slice technique with slices distributed
according to Gauss points (�) and the multi-slice technique combined
with skew interface conditions (+).

vergence compared to the equidistant distribution. The

approach with skew interface conditions provides the best

convergence and already accounts for skewing when only

one slice is considered.

VII. Conclusions

Skew can be taken into account in 2D FE machine mod-

els by interface conditions with skew factors applied at a

circle in the air gap. The new method o�ers reduced com-

putation times and increased modelling 
exibility.
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