
Electromagnetic force densities in the Finite Element context
François Henrotte, Kay Hameyer

I. INTRODUCTION

THE idea behind the definition of electromagnetic (EM)
forces is well known : they are determined by the vari-

ation of the EM energy when a configuration parameter (e.g.
the position of one node) is modified, keeping the EM field
constant. Although this definition, which is basically a partial
derivative in a carefully defined parameter set, is rather sim-
ple to state, the different steps to its implementation in a finite
element (FE) programme remain quite obscure and uncertain.
Moreover, there exist two distinct families of EM force for-
mulae. The ones belonging to the first family are based on the
Maxwell stress tensor while the other ones stem from the appli-
cation of the virtual work principle. This distinction is another
aspect that makes the situation unclear.

A survey into the literature shows that the expression of the
Maxwell stress tensor (See e.g. [1]) is generally obtained by
algebro-differential operations starting from the Maxwell equa-
tions. The virtual work principle, on the other hand, relies
more clearly on energy concepts but the formulae are obtained
by a cumbersome roundabout way involving the jacobian ma-
trix of coordinate transformation [2], [3], [6], [4], [5]. In both
cases, coordinates are used and the fundamental thermodynam-
ical concepts are buried into an overwhelming algebra. The is-
sue has also been treated in a coordinate-free manner in [7],
[8] but at the expense of resorting to the unusual mathematical
framework of differential geometry.

Another observation is that all these approaches disregard
the role played by the underlying matter. They assume a pri-
ori a specific expression for the magnetic constitutive law but
fail to ask the fundamental question : How is this law affected
by deformation ? In the end, the conditions of applicability of
the classical formulae are vague and hardly interpretable in the
context of a new material for instance. Consequently, the blind
test consisting in the numerical confrontation of different for-
mulae has been quite a popular game [9], [10], [11], [12].

This paper is organised as follows. In section II, the ther-
modynamic definition of the electromechanical coupling is re-
called and carefully placed in the variational context [13]. Du-
ality aspects are considered. In section III, the definition is ap-
plied to the particular case of an infinitesimal box. In presence
of a linear material, this leads straightforwardly to the expres-
sion of the Maxwell stress tensor as well as to that of classical
formulae obtained by the virtual work principle, thus making
the link between them obvious. The derivation being concise,
the applicability conditions show up much more intelligibly
and can be reviewed. Dual magnetic formulations are consid-
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ered. In section IV, by appying the approach to permanent mag-
nets and nonlinear materials, it is shown how magnetic con-
stitutive laws are affected by the deformation of the underly-
ing space, i.e. how the distinction between h−like (1−forms)
and b−like fields (2−forms), which is irrelevant in the expres-
sion of the electromagnetic constitutive laws, becomes essen-
tial when the electromechanical coupling are considered. In
section V, finally, the tensor nature of the EM force density and
that of the Maxwell stress tensor are analysed under the light
of the uncompletely antisymmetrised tensors defined in [14].

II. EM FORCES IN THE VARIATIONAL CONTEXT

Let ρΨ(b, u) be the energy density functional of an elec-
tromechanical system Ω. It depends on two independent vari-
ables : the induction field b and a displacement field u. If the
problem is posed in terms of the field h, instead of b, the avail-
able functional is the coenergy density functional ρΦ(h, u) and
the energy density functional is now defined by [13]

ρΨ(b, u) = min
h

{

h · b − ρΦ(h, u)
}

. (1)

Each coil is associated with a pair of dof’s : a flux φ and a
current I . Those fluxes and currents are global parameters that
play a part in the definition of the fields : bφ is a divergence-
free induction field that matches the fluxes φ in the coils while
hI is a magnetic field that matches the currents I . On the other
hand, moving parts of the system Ω are associated with global
parameters X and a continuous displacement field that matches
those displacements is noted uX .

This system is acted upon by external agents that are able to
impose either the flux φ or the current I in the coils, and also
to impose the displacement X of the moving parts. Let us first
consider that all coils are flux driven and that all moving pieces
are at known positions. The thermodynamical state function of
the system is the energy function

Ψ(φ, X) = min
bφ,uX

∫

Ω(uX )

ρΨ(bφ, uX). (2)

of the controle variables of the system, φ and X . The minimi-
sation ensures that the system is stationarised, i.e. that physical
laws (Ampere law and equilibrium) are verified. The formula-
tion in h, still with imposed fluxes, writes

Ψ(φ, X) = min
hI ,I,uX

∫

Ω(uX )

{

hI · bφ − ρΦ(hI , uX)
}

(3)

and one has for both formulations

I(φ) = ∂φΨ , F (X) = ∂XΨ (4)

where the partial derivatives imply that the derivation with re-
spect to one variable is performed keeping the other variables
constant. This is our only definition of an electromagnetic
force.



III. CLASSICAL MAXWELL STRESS TENSOR
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Fig. 1. Parallelepiped box

Assuming an euclidean underlying space, it is enough, so as
to avoid using coordinates, to work in the framework of vector
analysis. This renders the following derivation fairly concise,
though perfectly rigorous and general. The only conceptual ad-
dition brought to the theory of vector analysis is the distinction,
amongst the vector fields, between those that integrate natu-
rally over a curve (the 1−forms) and those that integrate over a
surface (the 2−forms).

A. Formulation in b

Let us consider the parallelepipedic box defined by the vec-
tors ~r, ~s and ~t, Fig. 1. The box is taken small enough to have a
uniform induction field~b inside. The fluxes across the facets of
the parallelipided are by definition





φst

φtr

φrs



 =





~s × ~t
~t × ~r
~r × ~s



 ·~b. (5)

Since the 3x3 matrix in (5) admits as inverse




~s × ~t
~t × ~r
~r × ~s





−1

=
1

V
(~r ~s ~t), (6)

where V = (~r × ~s) · ~t is the volume of the box, the induction
field is expressed as a function of the fluxes by

~b =

(

~r

V
φst +

~s

V
φtr +

~t

V
φrs

)

, (7)

the factors ~r/V , ~s/V and ~t/V being facet shape functions for
the parallipipedic region with uniform field. If the box is made
of a material of which the constitutive law is b = µh, with a
constant magnetic permeability µ, the magnetic energy in the
box is

Ψ = V
|~b|2

2µ
=

1

2µV

∣

∣~rφst + ~sφtr + ~tφrs

∣

∣

2
. (8)

The box is now deformed by perturbating the vector ~t by an
increment δ~t, leaving ~r and ~s unchanged. The variation of the
energy (8) writes

δΨ =
1

µV

(

~rφst + ~sφtr + ~tφrs

)

· δ~tφrs

−
1

2µV 2

∣

∣~rφst + ~sφtr + ~tφrs

∣

∣

2
δV. (9)

where we are now allowed to substitute back for ~b using (7)

δΨ =
φrs

µ
~b · δ~t −

|~b|2

2µ
δV. (10)

Since φrs = (~r × ~s) ·~b and δV = (~r × ~s) · δ~t, one has

δΨ = (~r × ~s)i σij δtj , σij =
1

µ

(

bibj −
|~b|2

2
δij

)

(11)

which is the classical definition of the Maxwell stress tensor.
In case of the formulation in h, the magnetic field inside the

box is represented as

~h =

(

~s × ~t

V
Ir +

~t × ~r

V
Is +

~r × ~s

V
It

)

. (12)

where the factors ~s×~t
V

, . . . are edge shape function for the par-
allipipedic region with uniform field. One sees here how much
the representation of a 1−form (12) and the representation of
a 2−form (7) are different from each other. Even if both are
vectors, their behaviour under a perturbation δ~t will be quite
different. This has important implications on the electrome-
chanical behaviour of a permanent magnet materials as will be
shown in the full paper.

On the other hand, the formulae for local EM forces stem-
ming from the application of the Virtual work principle [3], [6]
are found back by applying the same procedure to a tetrahe-
dral box underlied by the same vectors ~r, ~s and ~t. This will be
detailed in the full paper as well.
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