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Abstract – In this paper, a Newton trust region method is presented as an
improvement, with no extra computational cost, of the underrelaxed
Newton-Raphson method. The step is now determined by minimizing the
local quadratic approximation of the energy functional within a trust
region whose dimension is automatically adapted.

INTRODUCTION

The solution of non-linear magnetic problems can be
determined by minimizing the energy functional F:
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with A the vector of unknown vector potentials (in Vs/m),
wm the energy density (in J/m3) and T the source vector (in A)
[1]. The local quadratic approximation of F around the
solution at the kth iteration equals
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and exhibits ellipsoidal isovalues in a multidimensional
parameter space (Fig. 1). Analytical formulas for the gradient

F∇ and the Jacobian F2∇  are given in [1]. The Newton step
towards the minimum of (2) equals
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It is the direction along which a line search is performed in
order to determine the underrelaxation factor ák of the
enhanced Newton-Raphson method (Fig. 1) [2].

TRUST REGION METHODS

As N
ks and ák are computed separately, the underrelaxed

Newton-Raphson method may fail to realize the minimum

of (2) in a sphere of radius N
kk sα . In trust region (TR)

methods, both the direction and the step length are computed

simultaneously by minimizing (2) within a TR-radius Äk

around Ak (Fig. 1) [3]. The trust region can be a hypercube as
well. This constrained minimization problem is efficiently
solved by a variant of the conjugate gradient method [4].

Fig. 1 shows that the decrease of the functional may be
larger than possible along the Newton direction. Obviously,
the performance of a TR method depends on the size of Äk .
For large Äk , the step equals the Newton step. For small Äk ,
only little progress is made towards the solution. Therefore,
the TR radius is adjusted at each new iteration. If the ratio
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is close to 1, the actual reduction of the functional more or
less equals the predicted reduction by the local quadratic
model in (2). Hence, the latter is a reliable representation of
the functional and Äk may be increased. If there is less
similarity, e.g. if [ ]75.0,25.0∈ρk , the radius is not modified.
Otherwise, Äk is decreased and the last iterate is rejected [3].

CONCLUSION

The computational cost for the trust region is
approximately equal to the one of a Newton-Raphson step.
Per iteration, a trust method requires only one evaluation of
the functional (1), which is an advantage compared to the
underrelaxed Newton-Raphson method. The convergence is
guaranteed by the ratio check in (4) and it becomes quadratic
close to the solution. The full paper discusses this method in
detail for a practical application in computational magnetics.
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Fig. 1: Graphical interpretation of a trust region method
applied to a function F with two variables.


