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Abstract— Magnetic scalar potential formulation without cuts require
the definition of a basis for the cohomology structure of the magnetic field
function space. This paper presents an algorithm to construct such a basis
in the general case thanks to an adapted spanning tree.

INTRODUCTION

Magnetic potential formulations are very appealing for 3D
problems. However, in the classical t-ω formulation, the mag-
netic field in the non-conductive region is represented by the
gradient of the scalar potential ω only. That makes it necessary
to define cuts in order to get rid of multivalued potentials, what
is not an easy matter in the general case. In order to always
avoid cuts, special topological functions have to be build that
form a basis for the cohomology structure of the function space
containing the magnetic field in the geometry under considera-
tion. This paper demonstrates how to do so.

TOPOLOGICAL STRUCTURE

Let Ω be a connected (2D or 3D) mesh, Γb and Γh be the
complementary parts of the boundary ∂Ω of Ω where the fields
b0.n and h0 ∧ n respectively are known. Let C be the domain
occupied by all the conductors of the problem, C ⊂ Ω, and ∂C
be the boundary of C.

While div b = 0 can be automatically satisfied without any
restriction by defining the vector potential a as b = curl a,
the situation is more complicated for curl h = 0. One has
to consider the topological structure of the functional space
F (1)(Ω − C). Let B1 be the set of the gradients defined on
Ω−C and Z1 be the set of the curl-free fields defined on Ω−C.
Both are vector spaces. The quotient H1 = Z1/B1 is the coho-
mology group of F (1)(Ω − C). It is also a vector space but of
finite dimension. If the conductors of the problem under con-
sideration form an electrical circuit with NΣ linearly indepen-
dent loops, and if the sections of the conductors in which the
currents {Ik, k = 0, . . . , NΣ} can be imposed independently
are called {Σk, k = 0, . . . , NΣ}, it can be shown that the di-
mension of H1 is NΣ.

The magnetic field in the non-conducting region can now be
represented in the most general manner by

h =

NΣ
∑

k=0

Ipt
p + gradω (1)

where the tp’s form a basis for H1 and ω is a continuous (no
cut) scalar potential.
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CONSTRUCTION OF THE tp’S

The paper gives first an algorithm to build a spanning tree on
a given region. A second algorithm is then given to construct
one function t such that curl t = 0. Now, the source field must
obey the following constraints :



















curl tp = 0 in Ω − C
(tp − h0) ∧ n = 0 on Γh

tp ∧ n = 0 on S
curl tp.n = 0 on ∂C
∫

∂Σk

tp = Ikδkp, k = 1, . . . , NΣ

(2)

In order to ensure that those constraints are fulfilled, the span-
ning tree itself must be so that the subsets of the spanning
tree edges that belong to the surfaces Γh, S and ∂C and to
the curves ∂Σk form also spanning trees on those surfaces and
curves. However, the union of two trees defined independently
on two meshes is not generally a tree on the union of the two
meshes. A global approach is therefore needed which can be
worked out thanks to the rule : “The spanning tree build on
the union of two meshes D ∪ D′ includes a spanning tree on
D and a spanning tree on D′ if it includes a spanning tree on
D ∩ D′.” For that purpose, a more advanced spanning-tree
algorithm is described that works by organizing the edges of
the mesh into a hierarchy.

CONCLUSION

The magnetic scalar potential formulations require the def-
inition of special topological fields, in the static case as well
as in the dynamic case. The rules governing the construction
of the those fields have been reviewed and an algorithm that
follow those rules has been presented. The algorithm works
without restriction provided the geometry is known. The user
has just to define the surfaces whereon the magnetic field is
subjected to constraints. The algorithm does not require the
solution of any system of equation. Finally, it considers the
problem in the most general case and it can be implemented
once and for all.
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