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Abstract

A general field-circuit coupling mechanism for electromagnetic models is presented. The
topological treatment of the circuit allows for a well-defined choice of coupling unknowns
and equations, both for couplings of magnetic fields to magnetic circuits and couplings of
magnetic fields to electric circuits. The properties of the resulting systems of equations are
studied and appropriate iterative solution techniques are proposed. Two technical examples
demonstrate the modelling flexibility provided by field-circuit coupling.
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1 Introduction

Circuit simulation is close to technical understanding, offers fast models, but requires skilled
engineers to derive appropriate lumped parameters for insertion in the circuit model. A sim-
ulation approach based on a discretisation technique is more suited for models with arbitrary
geometries and complicated excitations, is commonly automated up to a certain extent, but
may require a considerable computational effort. For many electrotechnical problems, a circuit
model may provide a sufficient accuracy for a part of the model whereas the remaining part
requires a 2D or 3D discretisation, e.g. by the finite element (FE) method (Fig. 1). In that case,
hybrid field-circuit coupled models offer an optimal trade-off between simulation accuracy and
problem size. They require less simulation time compared to fully discretised models. Moreover,
the presence of technical values such as voltages and currents triggers the engineer’s experience
and may help to detect conceptual and modelling faults at an early stage of the design.

The paper is organised as follows. Section 2 describes the topological treatment of the circuit
model part. In Section 3 and Section 4, a magnetic FE model is coupled to a magnetic circuit
and an electric circuit respectively. Section 5 discusses appropriate iterative solution techniques
for the coupled systems of equations and Section 6 illustrates the coupling approaches for two
electrotechnical devices.
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fiir Schwerionenforschung (GSI)”, Darmstadt.
tCorresponding author. E-mail: degersem@temf.tu-darmstadt.de.
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Figure 1: Three-phase induction machine model: (a) external electric circuit (thick and thin
lines indicate twigs and links respectively) and (b) magnetic flux lines in the 2D FE model part.

2 Topological Circuit Model

We consider circuits which may consist of several disconnected parts and contain elements which
are coupled through a FE model (Fig. 1a). A loop is a closed path through the circuit [1]. A cut-
set is defined as a set of branches which upon removal would cause the number of disconnected
circuit parts to increase by 1. A tree is a set of branches connecting all circuit nodes without
forming loops. Tracing a tree through the circuit is done by selecting branches following a
priority rule which will be defined below. The tree branches are called twigs, the remaining
branches are called links and form the co-tree. A fundamental cut-set is formed by 1 twig and
the unique set of links completing the cut-set. A fundamental loop consists of 1 link and the
unique path through the tree closing the loop. The fundamental cut-sets and loops form maximal
independent sets for the cut-sets and loops of the circuit respectively. The tree partitioning is
algebraically represented by the fundamental cut-set matriz D and the fundamental loop matriz
B containing the signed incidences of the circuit branches to the fundamental cut-sets and loops
respectively. When the twigs are ordered first, the fundamental incidences matrices have the
form

D = [I Dyn] (2.1)
B = [ Bumw 1], (2.2)

where the subscripts ”tw” and ”In” indicate twigs and links or the associated fundamental cut-
sets of loops respectively. A fundamental property of circuit theory is the relation Byt =



_D’tl;v,ln [1]. Applying the Kirchhoff current law (KCL) and the Kirchhoff voltage law (KVL) to
the fundamental cut-sets and loops respectively results in the expressions

o[ B] = 2]

o 1[0 ] = (2],

with I and AV denoting currents and voltage drops. Because the fundamental cut-sets and
fundamental loops form linear independent sets, the relations in (2.3) and (2.4) are not over-
determined as would be the case if a Tableau analysis would be applied. The circuit theory
recalled here, does not restrict to electrical circuits. It can also be applied to e.g. magnetic and
thermal circuits.

Five categories of circuit branches are distinguished based on the form of the relation between
the voltage drop and the current of the branch:

e For an independent voltage source, the voltage drop is known a priori.

e For a woltage-driven branch, it is possible to express the voltage-current relation by
Ly = Gor AV + ibr,coup (2.5)
where Gy, is the DC conductance of the branch and ibr coup is a coupling term.

e For a voltage/current-driven branch, both expressions (2.5) and (2.6) are applicable.

e For a current-driven branch, the voltage-current relation is of the form
AKbr = Rbrlbr + ibr,coup (26)
with Ry, the DC resistance of the branch.

e For an independent current source, the current is known.

Branches are selected to participate to the tree in the order of priority indicated by the list above.
To each circuit part, the following procedure is applied. The set of connected nodes collects
all nodes that are already connected by the tree tracing procedure and initially consists of one
arbitrarily chosen node. The set of adjacent branches contains all branches of which one vertex is
connected. The tree is constructed by successively selecting the adjacent branch with the highest
priority. The new twig is removed from the set of adjacent branches and its node that was not
yet connected, is added to the set of connected nodes. Adjacent branches which are incident
to this node, are removed from the set of adjacent branches whereas other branches incident to
this node have to be removed. By construction, the priority of a twig is greater or equal to the
priority of all links belonging to the associated fundamental cut-set. Similarly, the priority of a
link is less or equal to the priorities of the twigs of the corresponding fundamental loop. This
procedure favours voltage-driven branches and current-driven branches to be selected as twigs
and links respectively. Voltage/current-driven branches take over the properties of voltage-driven
branches or current-driven branches depending whether they are selected for the tree or the co-
tree respectively. The exceptional cases when independent voltage and current sources show up
in the co-tree and the tree respectively, deserve a special treatment. If an independent voltage
source appears in the co-tree, the corresponding fundamental loop only contains independent
voltage sources. If the KVL is satisfied for this loop, the independent-voltage-source link can be



omitted. Otherwise, the circuit problem has no solution. An analogous reasoning applies to the
cut-set associated with an independent-current-source twig.

The circuit branches are indexed and sorted in the following order: independent-voltage-source
twigs (subscript ”twv”), voltage-driven twigs (subscript ”two”), current-driven twigs (subscript
"twu”), voltage-driven links (subscript ”Inu”), current-driven links (subscript ”Ino”) and inde-
pendent-current-source links (subscript ”1ni”). The fundamental cut-set and loop matrices are
partitioned accordingly:

[T 0 0 thv,lnu thv,lno thv,lni

D = 07160 tho,lnu tho,lno tho,lni 5 (27)
L 0 0 I 0 thu,lno thu,lni J
[ Blnu,twv Blnu,two 0 I 0 07

B = Blno,twv Blno,two Blno,twu 0 10 (28)
L Blni,twv Blni,two Blni,twu 0 0 I _

The zero entries at position (3,4) in D and (1,3) in B are due to the application of the priority
rules. A fundamental cutset associated with a current-driven twig can not contain voltage-driven
branches because these have a higher priority. The symmetry property of the fundamental cut-
set and loop matrices carries over to their subblocks: B,; = —DbT’a for each subscript a and
b.

The known voltage drops and known currents of the independent sources are collected in the
vectors AV, and I; respectively. The voltage-current relations are based on the positive-
definite diagonal matrices Giwo, Ginu, Rtwu, Fino and the coupling terms Yiwo.coup’ Linucoup’

P coup and Plo coup’ Two sets of unknowns are introduced: the voltage drops AV, along

the voltage-driven twigs and the currents I;,, through the current-driven links. The currents
through the current-driven twigs are

Loy = _thu,lnollno - thu,lnillni (2.9)
whereas the voltage drops along the voltage-driven links are
AV = _Blnu,twoAKtwo - Blnu,twvAKtWV . (2.10)

The expressions (2.5), (2.6), (2.9) and (2.10) are substituted into (2.3) and (2.4) yielding a mixed
formulation for the circuit problem:

*
G:WO D two,lno AKt;wo + gtwo,coup _ _Lcwo,src (2 1 1)
—B —Ry I * T | AV ’ )
Ino,two Ino Zlno Blno,coup ~Ino,sre
with the positive-definite Schur complements
:Wo = Giwo — tho,lnu G1lnuBlnu,two , (2 12)
Rikno = R — Blno,twu RiwuD twu,lno » (2 . 13)
the coupling terms
* — —
g1:Wo,coup - Qtwo,coup tho’lanlnu,coup ’ 2. 14)
* _
Blno,coup - ]_)lno,coup o Blno’tWUQtwu,coup (2' 15)
and the source terms
ltwo,src D tWO,lnillni - D two,lnu Glnu Blnu,twv AZt;wv ; (2 . ]-6)

Azlno,src = Blno,twv Azt;wv - Blno,twu Rtwu D twu,lnillni . (2- 17)



Figure 2: (a) Magnetic-field, magnetic-circuit coupled model, (b) circuit representation and (c)
flux wall FE shape function.

The symmetry of the system (2.11) follows from the property B,; = _DZ:a‘ The spectrum of
the system contains ny, positive eigenvalues and n),, negative eigenvalues with ny, the number
of voltage-driven twigs and nj,, the number of current-driven links.

3 Magnetic-Field, Magnetic-Circuit Coupling

The field-circuit coupling mechanisms are explained for 2D time-harmonic magnetodynamic FE
models. The generalisation of the field-circuit coupling approach, to electrokinetic, transient
and 3D models, is straightforward [2, 3, 4]. The governing partial differential equation (PDE) is

0 ( 04, 0 ( 04, _ o
% (1/ o > 3 <1/ 9y ) + jwoA, = . AV (3.18)

with A, the phasor of the z-component of the magnetic vector potential A, w the pulsation, v
the reluctivity, o the conductivity, AV the voltage drop between the front and the rear of the
model and 4, the length of the model. Consider the 2D computational domain Q¢ of Fig. 2a.
The boundary 0f) is subdivided into fluz walls T'y,; and fluz gates I'y ), alternating along 02
and ordered counter-clockwise. The magnetic vector potential is unknown but constant at each
flux wall and is called a floating potential. The geometry of the device is triangulated. The
linear FE shape functions associated with the mesh nodes are denoted by N; and N;. The
floating potential constraints are enforced in the FE model by fluz wall shape functions N, and
N, obtained by gluing together the individual FE functions associated with all mesh vertices at
I'vp (Fig. 2¢). At a flux gate, homogeneous Neumann constraints are applied. The magnetic
flux through the gate I'y , equals the difference of the floating potentials at the neighbouring
flux walls multiplied by the length of the model:

I,=¢ (Az,pﬂ - Az,p) : (3.19)

The flux wall 'y ¢ is chosen as reference flux wall and gets a zero potential value. Applying the
Galerkin procedure to (3.18) with the test and trial functions {N;, N} and {N;, N4} results in
the algebraic system of equations

[Ki,,- Kiq ] [ﬂj]Jr 01 _
Kpj Kpg Ug 9y

£
7 ] (3.20)
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Figure 3: (a) Solid conductor model and (b) stranded conductor model.
with u; and u, the FE degrees of freedom associated with the standard FE shape functions and

the flux wall shape functions respectively. The entries of the stiffness matrix K, the load vector
f and the unknown boundary integral g, are given by

ON, ON, ON, ON, )

K., = NN, ) dQ, 3.21
f, = / I AVAQ, (3.22)
B Qe £z

aAz)
= — N, dI' 2
5, = [ (%) mar. (3.23)

with 0/0n the derivation along the normal vector at I'y , outward with respect to Q. The
terms g correspond to the magnetic voltage drops between the two flux gates I'y, and I'g ) 1.
If 9, = 0, the magnetic flux can freely leave the FE model. This situation corresponds to FE
models of which the flux gates are connected to each other by an infinitely permeable material.
It is possible to describe the closing of the flux outside ¢ by connecting the FE model to
an external magnetic equivalent circuit [5, 6]. The magnetic circuit is partitioned using the
following priorities for twigs: magnetic voltage sources, magnetic reluctances, magnetic flux
walls and magnetic flux sources (Fig. 2b). The coupled system of equations is

XmecKi,j XmecKi,lno 0 lj Xmecii
XmecKlno,j XmecKlno,lno + Rlno Blno,two llno = Xmecip B llHO,STC . (3'24)
0 —D two,lno - Gtwo AKtwo AKtWO,SrC

The FE system part is scaled by xmec = 1/£, in order to preserve the symmetry of the system.
For convenience, flux-like quantities I; = £,u; are used as unknowns. The term XmecKino,Ino
represents the contribution of the FE model part to the magnetic reluctance of the fundamental
loops whereas Ry, represents the contribution of the external reluctances. Schur complements
are required if flux walls appear in the tree. These are not considered in (3.24) but follow the
description of Section 2.

4 Magnetic-Field, Electric-Circuit Coupling

Electric-circuit, magnetic-field coupled models are the most frequently used field-circuit coupled
models in the simulation of electrical energy transducers [7]. Two types of magnetically coupled
circuit branches are considered (Fig. 3):



e Eddy current effects in massive conductors are resolved by the solid conductor model. The
total current through the conductor is

Isol = GSOIAKSOI - / ]wo‘Ade (425)

sol

with G50 the DC conductance of the massive conductor, AV, the voltage drop along the
conductor and €25, the cross-section of the conductor with the FE model. The expression
(4.25) is of the form (2.5), hence, a solid conductor behaves as a voltage-driven circuit
element.

e In many technical windings, the redistribution of the electric current can be neglected.
The stranded conductor model is based on the assumption of a homogeneous distribution
of the current density:

Na

Sstr Zstr

with Ng; the number of turns, Sg; the area of the cross-section (g, of the winding with
the FE model and I, the applied current. The voltage drop along the winding is

istr = in Qgr (4.26)

Nitr
str str

with Ry, the DC resistance of the winding. Expression (4.27) reveals that the stranded
conductor model has to be treated as a current-driven branch in the electric circuit.

The coupled system of equations reads

K fe cgfe,two P, fe,lno Ufe f fe

T J
Qfe two Xext Gtwo XextD two,lno AKtWO = Xext L two ,STC . (4 . 28)
P, fe,Ino —Xext B Ino,two —Xext Rlno llno —Xext AKlno ,8IC

with the factor xext = 1/jwf, symmetrising the coupled system. The entries of the discretised
coupling terms Qfe two and P 1no are given by

g
Qisol = — / TN (4.29)
Qsol z
Ngir
Pise = — S N,AQ (4.30)
Qstr Sstr

Solid-conductor links and stranded-conductor twigs are resolved by Schur complements as de-
scribed in Section 2.

5 Solving Field-Circuit Coupled Systems

Since the dynamic interaction between electric and magnetic fields is of a linear nature, em-
bedding both phenomena in one coupled system matrix is particularly attractive. The choice
of the electromagnetic field and circuit unknowns influences the matrix structure and hence the
memory and CPU requirements of iterative methods applied to solve the coupled systems of
equations. Field-circuit coupled approaches can be interpreted as hybrid domain decomposition
techniques coupling finite element discretisations to lower-dimensional circuit models. In some



Table 1: Properties of the circuit of the three-phase induction machine model.

number of branches 192
number of circuit nodes 155
number of connected circuit parts 2
number of tree branches 153
number of links 39
number of cutset equations 146
number of loop equations 2
number of circuit equations 148

cases, using a mixed formulation in terms of both current and voltage unknowns for the electrical
circuit is recommended in order to preserve the sparsity of the system matrices.

The field-circuit coupling mechanism is designed in such a way that, as much as possible, the
properties of the original FE part of the matrix are preserved. A few, relatively dense equations
modelling the circuit are added to the FE system matrix. In case of time-harmonic simulation,
the FE system part is complex symmetric, in case of transient simulation, symmetric and pos-
itive definite. The coupled system preserves symmetry, but not the positive definiteness. The
coupled systems of equations are solved by Krylov subspace solvers for symmetric indefinite sys-
tems of equations. The transient system is solved by the Minimal Residual (MINRES) method
[8] whereas the complex-symmetric time-harmonic system is solved by the Quasi-Minimal Resid-
ual (QMR) method [9]. Block variants of common stationary iterative methods such as Jacobi
(JAC), Gauss-Seidel (GS) and Symmetric Successive Over-Relaxation (SSOR) are used to pre-
condition the coupled systems of equations. Within each block, a preconditioner tuned to the
particular part of the problem can be applied.

In the case of transient simulation, the elimination of one of the circuit variables (Ij,, in (4.28))
yields a positive definite system matrix which is equivalent to the nodal circuit analysis presented
in [10]. The explicit substitution of any of the circuit equations of (3.24) and (4.28) in the
FE matrix part would destroy its sparsity. For the numerical example, described below, the
coupled system has 47000 non-zero elements whereas the explicit Schur complement contains
1989732 non-zeros. This would destroy the efficiency of the matrix-vector product in the Krylov
subspace method. Instead, a Krylov subspace solver is applied to the Schur complement without
explicitly constructing the corresponding dense system of equations. The circuit matrix part
is factorised in advance which is inexpensive as the circuit model typically contains only a few
hundred equations. The matrix-vector product required by the Krylov subspace solver uses this
factorisation within the computation of the multiplication of a vector by the Schur complement.
The positive definite system is solved by CG. Since the true system matrix is not available, an
algebraic preconditioner can not be constructed. However, a good preconditioner for the FE part
can be used as a preconditioner for the Schur complement as well. Then, the solution process
may benefit from an available powerful preconditioning technique for parabolic PDEs, such as
algebraic multigrid (AMG). It should be mentioned that this preconditioner does not account
for the electric behaviour of the system. As a consequence, the efficiency of this approach has
to be proven experimentally for each particular model under consideration. In [11], an AMG
preconditioner including the circuit equations is proposed and is shown to outperform the block
preconditioning strategies presented here.
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Figure 4: Axisymmetric model of a dielectric heating device: current lines in the device and in
one of the electrodes.

6 Applications

The field-circuit coupling approaches are illustrated by two technical examples. The first ex-
ample is a magnetic-field, electric-circuit coupled model of a 45 kW, three-phase, squirrel-cage
induction machine (Fig. 1). The magnetic field in the cross-section of the machine is modelled
by finite elements. The supply, the stator end windings and the rotor ring are taken into ac-
count by additional lumped parameters. The stator windings and rotor bars are represented by
stranded conductor models and solid conductor models respectively. Table 1 gives the results
of the topological description of the external electric circuit model. The field-circuit coupling
approach enables the simulation of this hybrid model by means of a single system solution. The
second example is an electrokinetic FE model combined with both an electric and a magnetic
equivalent circuit, applied to a dielectric heating device (Fig. 4). A cylindrical dielectricum is
placed between two circular electrodes. The magnetic equivalent circuit applies the short-circuit
connection of all magnetic paths. The heating device is excited by an electric circuit containing
a voltage source, a resistor and a resonant circuit. This model serves as an example both for
an electrokinetic field to electric circuit coupling, which is similar to the coupling developed in
Section 3, and an electrokinetic field to magnetic circuit coupling, which similar to the coupling
developed in Section 4.

7 Conclusions

The topological treatment of circuits allow for the inclusion of FE model parts. The resulting
coupled systems of equations are symmetric and indefinite and are solved by Krylov subspace
solvers with block preconditioning strategies. The field-circuit coupled approach offers valuable
modelling facilities for electrotechnical devices.
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