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Abstract — Stability and robustness of the controlled active magnetic bearings (AMB's), can be sufficiently
improved with the knowledge of the mathematical model. Therefore an analysis of the laboratory
implementation of a radial AMB is presented in the paper. The bearing force is determined by numerical
calculations using 2D finite element method and the Maxwell's stress tensor. The current gain and position
stiffness are determined in the entire operating range. The validation of the calculated bearing force, current
gain and position stiffness is performed through the comparison with measured results. Moreover, the results
of an approximation of the bearing force are presented. Obtained results make it possible to perform a robust
control design in the entire operating range.

Introduction

Magnetic bearings are technical applications of a stable rotor levitation. Various principles of
magnetic bearings are known [1], but the principles based on controlled electro—magnetic circuits to
provide the attractive force are the ones which are in common use. Two electromagnets on the
opposite sides of the ferromagnetic rotor pull the rotor in the opposite direction. As such a system is
unstable, a rotor position control is required to stabilize it. Bearings using this principle are called
active magnetic bearings (AMB's). Due to their non-contact operation, AMB's offer significant
advantages. Higher speed, no friction, no lubrication, precise position control and active vibration
damping make them particularly appropriate for high—speed rotating machines. Technical applications
include pumps, centrifuges and precise machine tools.

Stability and robustness of the controlled AMB's must be achieved in the entire operating range. To
design a low order robust controller only relevant and possible model uncertainties should be taken
into account. Therefore a careful analysis of the magnetic bearing must be performed, using the finite
element method (FEM) and measurements [2, 3].

In this work, an analysis of the laboratory implementation of AMB's is presented (Fig. 2). The bearing
force is a non-linear function of the currents and the rotor position. Therefore, the differential driving
mode and the linearization of the bearing force are performed. The current gain and position stiffness
are defined as partial derivatives of the bearing force. Furthermore, the FEM procedure for the force
determination is described. The force is calculated by the Maxwell's stress tensor method using the
programming environment described in [4]. The validation of the calculated bearing force and the data
fitting are performed through the comparison with measured forces. The current gain and position
stiffness are determined in the entire operating range. Thus, the mathematical model of the magnetic
bearing is known in the entire operating range, but only relevant and possible model uncertainties are
considered. Moreover, an analytical description of the mathematical model is presented approximating
the bearing force. Using this results the robust low order controller, valid in the entire operating range,
will be designed in the next step of this development.



Laboratory Implementation of Active Magnetic Bearings

The discussed system of AMB's is presented in Fig. 2. It is highly simplified, consisting of a pair of
radial magnetic bearings placed at one end of the shaft and a ball bearing placed at the other end. Each
of the magnetic bearing is used to stabilize the shaft movement only in one direction, i.e. the
horizontal and vertical direction. The rotor and the four—pole stator are made out of laminated steel.
Windings are connected in series and supplied in such a way that they can be considered as two

"horse—shoe" electromagnets, as shown in Fig. 1.

Fig. 1. Schematic presentation of a radial magnetic bearing

In the mathematical modeling of the radial magnetic bearing the rotation of the rotor and the non-
linear iron properties are neglected, while windings of all electromagnets are assumed to be ideal and
identical. In equation (1) the non-linear dependence of the resultant electromagnetic force F on the
currents of both electromagnets 7; and i, and the rotor position y is expressed. ¢ denotes the nominal
air gap, while k represents the material and geometrical properties.
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Fig. 2. Laboratory implementation of AMB's



With the introduction of the differential driving mode (2), a bias current i is operating the winding of
both electromagnets. Force control is performed by superposing a control current i, to the winding of
one electromagnet and subtracting it in the winding of other one, where i, < iy. In spite of constant
losses due to the bias current the chosen driving mode is justified, since the force—current dependence
becomes linear for small rotor displacements. In addition, equation (1) is linearized considering the
differential driving mode. The obtained equation (3) is valid in the vicinity of the operating point
(iaor, Yor), Whereby the current gain k; and position stiffness k, are defined by (4). If we want to
consider the influence of non-linear iron properties, local saturations and magnetic flux leakage, we
have to use FEM-based numerical calculations.

Fliy,y)=Flisop>yop)+ki(is —inop) tk, (Y= Yop) 3)
K, ::aF(l.A,y) : K, ::aF(lA,y) @
diy or dy oP

Force Calculation

In this section the procedure for calculating the force of the radial magnetic bearing is presented. The
geometry and data of the laboratory implementation of a radial magnetic bearing are presented in
Fig. 3 and in Table 1. The FEM-based calculation is implemented in the programming environment,
which is described in [4]. The calculation for the chosen points (i, y) is carried out in four steps.

e Step 1: Task definition. The bearing geometry, the material, the current densities, and the boundary
conditions are parametrically defined.

e Step 2: The initial discretization of the model is performed. The largest element's edge is explicitly
defined for the air gap region. In this way the classical mesh adaptation is avoided, which reduces the
calculation time by 40%.

stator

Fig. 3. Geometry of the radial magnetic bearing



Table 1. Data of the radial magnetic bearing

data parameter value
shaft radius Fep [Mm] 8.00
rotor radius r, [mm] 19.25
stator radius ry [mm] 19.85
yoke inner radius 1y [mm] 33.80
yoke outer radius Fyo [Mmm] 41.00
pole width d, [mm] 17.80
bearing length / [mm] 30.70
angle between two poles | 2¢ [rad] /3
number of turns per pole | N/2 50
bias current ip [A] 2.5

e Step 3: The non-linear solution of the magnetic vector potential A is obtained by means of 2D
computation based on the FEM. The problem is formulated by Poisson's equation (5), where v
represents the magnetic reluctance, J is the current density vector, and V is Hamilton's differential
operator.

V-WVA)=-J (5)
e Step 4: The force is determined by Maxwell's stress tensor T, following equation (6). Vector F

consists tangential and normal force component, n is the unit normal vector of the integration surface
S. In the 2D case the integration is performed over the contour placed exactly in the middle of the air

gap.

F=V§Tn¢s (6)

Force Measurement

The validation of the calculated force is performed by measurements. Force is measured via a
handle—lever that connects the shaft and the bending beam. The position of the rotor is measured by an
induction proximity probe, while each electromagnet is separately supplied by a DC current. Before
starting with measurements the initial shaft position point, i.e. the center of the bearing (y = 0) must be
found. After determining the center we start with force measurements in chosen points (is, ¥). In this
procedure the forces for all selected control currents are measured at all rotor positions.
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Fig. 4. Force F(iy, y): a) FEM, b) measurements, c) approximation function of measured results



Results

The numerical calculation of the bearing force is highly dependent on the air gap. Due to the
manufactured rotor steel sheets the magnetic active air gap is bigger than the geometric air gap.
Therefore, data fitting is considered in the force calculation. In our case the air gap is increased from
0.6mm to 0.663mm. In the FEM procedure the rotor radius is varied until the calculation agrees with
measured value for the typical case (i = 1A, y = Omm). Since results of the calculation in all other
points of the operating range agree with measurements, this approach can be accepted. The increase in
the air gap for 0.063mm can be compared with the findings of authors in [3]. The agreement between
calculated and measured force (Figs. 4a,b) is very good. The maximum difference reaches 8N, but the
average relative difference is below 7.4%.

We determine the current gain ; as the quotient of the force difference and control current difference,
and the position stiffness k, as the quotient of the force difference and rotor position difference in the
entire operating range. The results of the differentiation of calculated and measured results are quite
close and are shown in Figs. 5a,b) and 6a,b).

To obtain an analytical description of the bearing force we present the measured force with an
approximation function (7), which is shown in Fig. 4c). Thus, it is possible to determine k; and &, as an
analytical current and position derivatives of the function (7) respectively (Figs. 5c, 6¢).
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Fig. 5. Current gain k;: a) differentiation of the FEM-based results, b) differentiation of measured results,
c) analytical derivation of the approximation function
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Fig. 6. Position stiffness k,: a) differentiation of the FEM-based results, b) differentiation of measured results,
c) analytical derivation of the approximation function



Conclusion

An analysis of the laboratory implementation of AMB's is presented in the paper. The linearized force
expression of the bearing is written, by defining the current gain and the position stiffness. The force is
determined by FEM-based calculations using the Maxwell's stress tensor. To update the model
uncertainties the data fitting is used in the calculation procedure. The validation of the calculated force
is performed by measurements. The agreement between calculated and measured force is very good.
Differentiation of the bearing force is used to determine the current gain and position stiffness in the
entire operating range. Obtained results determine the mathematical model in the entire operating
range including only relevant and possible model uncertainties. To obtain an analytical description of
the mathematical model an approximation of the bearing force is performed. This results make it
possible to perform a robust control design in the entire operating range and will be applied in the next
step of the development of the AMB.
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