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Comparison of Induction Machine Stator Vibration
Spectra Induced by Reluctance Forces and

Magnetostriction
Koen Delaere, Ward Heylen, Ronnie Belmans, and Kay Hameyer

Abstract—For rotating electric machines, the reluctance forces
(Maxwell stresses) acting on the stator teeth are a major cause of
noise emission. Next to the reluctance forces, magnetostriction is a
potential cause of additional noise from electric machines. First, a
thermal stress analogy is used to introduce magnetostriction in the
finite-element framework. Next, we present the computation and
comparison of the stator vibration spectra caused by these two ef-
fects separately, by example of a 45-kW induction machine. More-
over, two kinds of magnetostriction characteristics of the stator
yoke material are compared: a quadratic ( ) curve and a ( )
curve with zero-crossing around 1.5 Tesla.

Index Terms—Coupled magnetomechanical problems, finite-el-
ement methods, magnetostriction.

I. INTRODUCTION

NOISE and vibration research has been focusing on
reluctance forces (Maxwell stresses) as the major cause

of noise and vibrations in rotating electric machinery. For non-
rotating machinery (transformers, inductors), magnetostriction
is the major cause of noise, but also for induction machines,
magnetostriction can be responsible for a considerable part
of the machine’s noise [1], [2]. The simulation of vibration
spectra induced by reluctance forces has been investigated
extensively using finite-element models, e.g., [3] and [4], while
the simulation of magnetostriction effects has been left aside.
This is partly due to the fact that accurate magnetostriction data
are hard to obtain. The magnetostriction of the yoke material
also depends on its stress condition, but it is hard to estimate
the stress remaining in the material after a shrink-fit of the yoke
into the stator housing. Moreover, it is often difficult to embed
this kind of material behavior in (existing) finite-element
software, although this may be resolved with the advent of
powerful methods like Preisach material modeling, which can
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be enhanced to encompass magnetostriction [5]. A straight-
forward finite-element method to capture the magnetostrictive
deformation that is based upon a thermal stress analogy, has
been presented earlier [6]. The theoretical background is
repeated here briefly and is subsequently used to estimate, for
a 45-kW induction machine:

1) the relative importance of reluctance forces and magne-
tostriction with respect to stator deformation;

2) the impact of using materials with different magnetostric-
tive behavior.

The isotropic magnetostriction curve

(1)

will be referred to asmagnetostriction type 1and the isotropic
curve with zero-crossing around 1.5 tesla (T)

(2)

will be referred to asmagnetostriction type 2. Both kinds of
magnetostriction occur commonly in electric steels. We confine
ourselves to two-dimensional (2-D) models, but the concepts
introduced here are easily extended to three-dimensional finite-
element models.

II. THERMAL STRESSANALOGY

For plane stress , the elastic strainin direction
is determined by the external stressesand

(3)

where and are the Young and Poisson modulus, respec-
tively. When a material with thermal expansion coefficient
is heated, it will exhibit athermal strain which is added
to the elastic strain in order to give the total strain

. The elasticity equation (3) is now written as [7]

(4)

The same procedure is valid for magnetostrictive strain
instead of thermal strain, giving

(5)
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Fig. 1. The magnetostriction forces distribution (b) representing the strain
caused by (a) magnetostriction due to the magnetic fieldB, consists of a set of
forces parallel toB and a set of forces perpendicular toB.

Similarly, the elastic energy of a mechanical finite-element
system is determined by theelastic displacement and the
mechanical stiffness matrix

(6)

where again the elastic displacement is not necessarily
equal to the total displacement, since the material may exhibit
thermal or magnetostrictive expansion. The elastic energy
expressed in terms of total displacementand magnetostrictive
displacement is

(7)

The next section describes how the magnetostrictive displace-
ment is found, and how this leads to the concept of
magnetostriction forces, the latter being the direct equivalent of
thermal stresses (Fig. 1).

III. M AGNETOSTRICTIONFORCES

For finite-element models, the magnetostrictive displacement
can be computed on an element-by-element basis. The mid-

point (center of gravity) of the finite-element is held fixed. The
magnetostrictive strain of the element is found using the ele-
ment’s flux density and the characteristic of the mate-
rial. If a set of characteristics are given, one is chosen
for the appropriate value of tensile stress.

A. Isotropic Magnetostriction

For materials with isotropic magnetostriction (Fig. 2), the
local axis of the element are rotated in such a way that the
flux density vector coincides with the local axis. The strains

and in the local frame are then given by

(8)

where is the magnetostrictive strain in the direc-
tion of ( direction) and is the magnetostrictive strain
in the transverse and directions. Usually, magnetostriction
will leave the total volume and density unchanged [8], so that

. This volume invariance is equivalent to
a magnetostrictive “Poisson modulus” of 0.5, which is bigger
than the mechanical Poisson modulus of about 0.3. Therefore,

Fig. 2. Magnetostrictive material characteristics for isotropic nonoriented 3%
SiFe (solid lines, as a function of tensile stress) and anisotropic M330-50A
(dashed lines, for rolling and transverse direction).

when the magnetostrictive deformation is represented by a set
of mechanical forces in the direction of the vector, there is
always a set of forces perpendicular toto correct this differ-
ence in Poisson modulus (Fig. 1). The above is valid forplane
stress. In a 2-Dplane strainanalysis, the thickness (direction)
of the material has to remain constant and an additional tensile

stress needs to be applied in order to obtain . This ad-
justs the values (8) to

(9)

where is the mechanical Poisson modulus of the material and
.

B. Anisotropic Magnetostriction

Fig. 2 shows a typical magnetostriction characteristic for
anisotropic M330-50A steel (dashed lines) for rolling direction
and transverse direction. As an approximation of the anisotropic
behavior, the flux density vector is decomposed into aand
a component in the element’s local axis, arranged so
that the axis coincides with the rolling direction, and the
axis with the transverse direction. The rolling direction curve

is then used with as input, and the perpendicular
direction curve with as input, giving, forplane
stress

(10)
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Depending on the actual anisotropic behavior of the material, a
more accurate strain description can be used, e.g., taking mag-
netostrictive shear into account [9]. A similar correction as
in (9) can be made for theplane straincase.

C. Magnetostrictive Displacement

Still working in the local axis, the strains are now
converted into nodal displacements con-
sidering the midpoint of the element as fixed

(11)

where indicates the element nodes with coordinates .

D. Magnetostriction Forces

The mechanical stiffness matrix for one element gives,
after multiplication with the magnetostrictive displacement
of the nodes, the nodalmagnetostriction forces

(12)

Equation (12) has to be performed element by element (using
) and not for the whole mesh at once (using the global matrix

). This is because the different displacements ,
, due to magnetostriction in the elements surrounding

one specific node, shouldnot be summed. These displace-
ments should first be converted into magnetostriction
forces, and then the forces are summed to give the total force
on this node.

When the magnetostriction forces for all elements have been
computed, they are summed to give the total magnetistriction
force distribution

(13)

Fig. 1(b) shows the resulting for a square block of material
subject to a homogeneous field; all internal node forces cancel.
Once this distribution is known, the corresponding global de-
formation of the entire structure due to magnetostriction, is
found using the global mechanical stiffness matrix

(14)

Note that (13) should only be used to find from , while
(14) should only be used to find from . Since the global
stiffness matrix was used to find , the influence of ex-
ternal boundary conditions has been taken into account, as well
as the effect of the shape of the body (e.g., ring-shaped stator).

IV. M AGNETOMECHANICAL SYSTEM

The total energy of the magnetomechanical system is the
sum of the elastic energy and the magnetic energy

(15)

where is the magnetic stiffness matrix andis the -com-
ponent of magnetic vector potential. The mechanical equation
of the magnetomechanical system is found by considering the

virtual work done by a set of external forces(where vector
potential remains constant)

(16)

The magnetic forces (reluctance forces as well as Lorentz forces
[6]) are found by the virtual work term [10]

(17)

which is valid for linear and nonlinear magnetic systems. The
elastic forces as well as the magnetostriction forces are given by
the other virtual work term . First, we write the elastic
energy as the sum of all element contributions

(18)

then, using , the partial derivative be-
comes

(19)

(20)

(21)

since for constant . When the feedback of mag-
netostriction on the magnetic field is neglected, the magnetic
equation of the magnetomechanical system is just ,
where is the source term vector. The magnetomechanical
system then becomes

(22)

where the second equation is obtained by substituting (17) and
(21) into (16). The system (22) can be solved in a numerically
weak coupled scheme, first solving the magnetic problem and
then solving for the mechanical displacement.

V. MODAL DECOMPOSITION

The vibration of the stator is governed by

(23)

where is the nodal displacement vector and is the
force distribution acting on the stator for a specific rotor posi-
tion , . , and are the mechanical mass,
damping, and stiffness matrices. Neglecting damping
and using the modal decomposition with the modal
matrix containing a selected set of stator mode shapes,
and the vector of generalized modal coordinates, (23) is trans-
formed into [11]

(24)

where is the mode’s eigenfrequency. The modes are calcu-
lated taking mass and stiffness of both the yoke iron and the
stator coil copper into account. For a given force pattern(in
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(a)

(b)

Fig. 3. Stator acceleration spectra induced by (a) reluctance forces (dotted
line) and magnetostriction type 2 (solid line), (b) magnetostriction type 1 (dotted
line) and magnetostriction type 2 (solid line).

this case or ) occurring for rotor position , and a
given mode shape , the mode participation factor (MPF)
is

(25)

For a slip , the period of the MPF can be approximated by
or a multiple of this [4]. Here, the period

of the MPF is approximated by and the
MPF are sampled using 180 rotor positions at 2intervals. From
(25), the MPF are known as a function of rotor position, and the
rotor speed allows us to find the MPF as a function of time.
The individual modal equations are solved in the frequency do-
main by applying a discrete Fourier transformation to (24)

(26)

The spectrum of all mode shapes of interest can be found
in this way. The separate complex spectraof the relevant

modes are composed back into the actual stator displacement
and acceleration spectra using the modal composition .

VI. EXAMPLE: 45-kW INDUCTION MACHINE

Fig. 3 compares the stator acceleration spectra computed for
reluctance forces as well as for the two types of magnetostric-
tion (1) and (2), for the case of a 45-kW induction machine
under normal operation. Fig. 3(a) compares the stator accelera-
tion spectra induced by reluctance forces (dotted line) and mag-
netostriction type 2 (solid line), while Fig. 3(b) compares the
vibration spectrum induced by magnetostriction type 1 (dotted
line) and magnetostriction type 2 (solid line). It can be seen that
the vibrations (and, thu,s also the noise) due to magnetostriction
are considerably smaller than the effect due to reluctance forces,
except for the 100–Hz force component, where they are of the
same order of magnitude. The overall difference between mag-
netostriction type I and II is small, and is only important for a
few specific modes. The full analysis required 15 hours of CPU
time on a HP-B1000 workstation.

VII. CONCLUSION

Using a thermal stress analogy, a set of magnetostriction
forces is computed that induces the same strain in the material
as magnetostriction does. Using the example of a 45-kW
induction machine, this magnetostriction force distribution
is compared to the reluctance force distribution with respect
to the resulting stator vibration spectrum for two typical
magnetostriction characteristics.
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