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An Algebraic Multilevel Preconditioner for
Field-Circuit Coupled Problems

D. Lahaye, S. Vandewalle, and K. Hameyer

Abstract—Quasi-stationary magnetic field formulations are cross section of an electrical machine or transformer. The con-
often coupled with lumped parameter models for the driving ducting region of2 is the union of the cross sections of stranded

elgctrlca_l system. The finite element discretization of sgch formq- and solid conductor€, , and€., ,. Denoting the noncon-
lations yields linear systems with a large sparse coefficient matrix . . ’ ’
Sductlon region by2...., we have

bordered by dense coupling blocks. The presence of these block
prevents the straightforward application of black box algebraic
multigrid solvers. We present a modified multigrid cycle that takes Q2 = (UpSlstr, p) U (Ug€sol, ¢) U QRcore- (1)

the coupling blocks into account. The resulting algebraic multi- ) . ] )

grid solver is used as a preconditioner for the conjugate gradient We assume all electromagnetic quantities to vary sinusoidally

method for complex symmetric systems. We give evidence of thein time at low angular frequencay. This allows us to write a
efficiency of the new method for the calculation of an induction generic electromagnetic quantify(x, t) as
motor.

Index Terms—Eddy currents, finite element methods, iterative F(x,t)= F(x)cj‘“'t (2)
methods.
wherel’ is the phasor of". With each stranded and solid con-
ductor, we associate the current and voltage didp. , and
AIA/SOL(I, respectively. We denote the number of windings and
YBRID field-circuit coupled problems frequently arise inthe area of the stranded conductor Ny , and S, ,, and the
electromagnetic engineering applications. In such prolength of all solid conductors by., respectively. Finally, we
lems, a differential equation problem for the magnetic field idenote by~ ando the magnetic reluctivity and the electric con-
coupled with a linear system modeling the electrical excitationguctivity. The magnetic field problem is formulated using the
We consider two-dimensional (2-D) quasi-stationary magnetiomponent of the magnetic vector potential By introducing
field problems and introduce the phasor of theomponent of the notation

I. INTRODUCTION

the magnetic vector potential as field unknown. The electrical . .
circuit, on the other hand, is formulated in terms of linearly r (A) __9 VaAz A I/3Az 3)
independent Kirchoff current and voltage laws and gives rela- - Oz Oz dy dy

tions between the currents and voltages in the electrically con- o
ducting parts of the model. The field and circuit formulations af@€ magnetic field problem oft can be stated as
coupled by the magnetically induced currents and voltages in o)

the conductors. The finite-element discretization of the coupled £ (AZ) +jwod, = L. AVl g 0N sl 4

problem results in large system of algebraic equations. Solving R Nip <
such systems linear system forms a computational bottleneck L (Az) = t’ Al p on Qg p

in finite-element models for technically relevant problems. Our R st

aim is to alleviate this bottleneck by using efficient algebraic L (AZ) =0 oN Qeore (4)

multigrid techniques. . ) . . I
supplied with appropriate boundary conditions [1]. This differ-

ential problem allows model saturation by using techniques ex-
_ o ~ plained in, e.g., [2]. It is discretized by first-order nodal finite
To formulate the field-circuit coupled problem, we considesiements defined on adaptively constructed meshes of triangles

a 2-D domains} partitioned into electrically conducting andwith characteristic mesh width. The discretization yields the
nonconducting regions. This domain represents for instance fipar system of algebraic equations

Il. FIELD-CIRCUIT COUPLED PROBLEMS
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conducting parts if2 are interconnected and connected to oth@roblem. Since algebraic multigrid codes require no informa-
circuit elements. It is therefore necessary to take the electritian on the geometry of the model, it is easy to incorporate
circuit into account. them into existing finite-element simulation packages.

A topological method that allows us to obtain a description To describe algebraic multigrid formally, 1€t denote the
of the circuit in terms of a maximum set of linearly independersiet of nodes of a computational grid with typical measure of
Kirchoff current and voltage laws is described in [3]. It operatabe mesh widthk. The discretization of a scalar elliptic PDE on
on a graphl’ associated with the circuit and allows to treat arthis mesh results in a linear algebraic systAmx;, = by. In
bitrary interconnections of solid and stranded conductors. Fawlving this system using AMG solvers, one distinguishes two

stationary currents, it yields the linear system phases. In a setup phase, the algorithm constructs a hierarchy of
coarser meshes and the corresponding linear systems. In the cy-
Cy=g (6) cling phase, this hierarchy of discrete problems is used to solve

h h e he fund y q the problem by multigrid cycling. The setup phase consists of
where the matrb represents the fundamental loop and cutsgf, following three steps. First, a set of coarse grid points is se-

equations associated with the réef4] and whereg andy lected. Then, the restriction and interpolation operators mapping

corre_spo_nd to the I_<nown and unk_no_wn voltages and cur_rent§|18m fine to coarse grid are constructed. Finally, a coarse grid
the circut, respectively. The matri is complex symmetric. equivalent of the fine grid system matrix is constructed.

The electrical circuit system (6) needs to be generalized 101 o cajection of coarse grid points induces a partitioning

situations where branches are magnetically coupled by thegfi'n — " U F" whereC" andF" denote the fine and coarse
rid points, respectively. The construction of this partitioning

nite-element model. The magnetically induced effects in co
ductors must then be taken into account. This is done by add Yeferred to as the C/F splitting 6F". The next coarser grid

the term(B;,)¥ x;, corresponding to the integral of the discret?ly is identified with (™

magnetic vector potential over the cross section of the solid andAfter having constructed the C/F splitting. AMG combutes
stranded conductor to the left-hand side of (6) to obtain g P 9. P

a matrix dependent interpolatiaf},. For both the coarsening
(Bx)'xs + Cy = g. @ ano_l the comp_utatlon of the interpolation we!ghts, AMG ex-
ploits information about the strength of coupling between the

The rectangu|ar matriBh allows us to rewrite the magnetiCnOdeS in the Computational grld This information is coded in

source ternf;, in (5) in terms of the circuit unknowns as the system matrixd,;,. For symmetric problems the restriction
operatorl;}” is defined as the transpose of the interpolation, i.e.,
f, = By. (8) I} = (I%)T. Having the intergrid transfer operators available,

_ ) the coarse grid equivalent &, is computed by
The two linear systems (5) and (7) can therefore be written as

A <xh> <0> ) Ay =ITHAIY. (11)
h =

Y & The above procedure is applied recursively using as it
where the matrix4;, is complex symmetric and has the fol-to construct the next coarser grid problem. The recursion termi-

lowing block structure: nates if either the size &£ ; on some coarser level drops below
a prescribed number or if the fill-in produced by (11)An; be-
Ay = < A Bh) ) (10) Ccomes too large.
B C Algebraic multigrid solvers were originally developed to

solve symmetric positive definite problems [8]. In [9], we
Extended the applicability of AMG for solving 2-D quasi-sta-

of C (up to a few hundred) is much smaller than thatof (up tionary eddy-current magnetic field problems. These problems

S . : ield linear systems with complex symmetric coefficient ma-
to one million). The matrixC furthermore remains unchanged . .
; . . rices. To solve such problems by AMG, we base the selection
as the mesh is adaptively refined.

of the coarser grid and the computation of the interpolation
operator on the real part of the matrix. This interpolation is real,
and as a consequence, the coarse grid operatbris again
In this section, we briefly summarize the multigrid idea whileomplex symmetric.

paying particular attention to algebraic multigrid methods. The straightforward application of AMG to system (9)
For more detailed information, see [5] and [6]. Multigridnvolving the matrix.4;, is hampered by the presence of the
methods are efficient iterative techniques for solving disubmatrice®,;, andC. These submatrices destroy the structure
cretized partial differential equations. They complement thaf the real part of the system matrix for which AMG is known
action of a smoother on a given fine grid with the computaticie perform satisfactorily. In developing performant iterative
of a correction on a coarser grid. The implementation of treehemes for solving (9), we first tried to reuse an existing
required coarser grid discretizations is cumbersome in realisiG code without altering its black-box nature. We did so by
engineering applications. Algebraic multigrid (AMG) solversncorporating the AMG code in block Jacobi and Gauss—Seidel
[7] cure this problem by providing algorithms for the automatipreconditioning schemes. In an attempt to improve this ap-
(i.e., without user intervention) construction of the coarser grfstoach, we generalized the AMG scheme. In this generalized

The field-circuit coupling is thus performed without generatin
any fill in the discrete differential operatek;,. The dimension

I1l. A LGEBRAIC MULTIGRID
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scheme, the sequence of coarser grids is built based on the Ezaih variable if2%, corresponds to a finite-element mesh point.
part of the submatrixd;,, and the matriceB;, andC are taken The number of elements ﬁ’g equals the number of loop and
into account on the coarsest grid and in the cycling phase. Thgset equations. Next, we describe a generalized AMG algo-
block preconditioning and generalized AMG approaches wilithm for solving the given linear system. We will first give de-
be discussed in Sections IV and V, respectively. tails of the two-grid variant of our algorithm. In doing so, we
In all our numerical experiments, we make use of the AM@iscuss the setup and the solve phase separately.
code developed by [7]. For the implementation of the algorithms We coarsen the s€}t” is such a way that the electric degrees
we will present in this paper, we wrote an interface that allovef freedom$2, are in the coarse grid, i.e.,
to call this AMG code from within PETSC [10].
Q. coff, (15)
V. BLOCK PRECONDITIONING SCHEMES The magnetic degrees of freed@d, are split into coarse and
A first approach in reusing AMG for solving (9) is throughfine ones denoted bg’;, and F'},, respectively. The magnetic
the use oblockpreconditioning. The block Jacobi scheme  coarse gridQ%,; is identified with C%,. AMG constructs this
splitting and the magnetic interpolatidfy mapping fromQ%,
<Ah 0 ) <Zl> _ <r1> (12) 0% using information contained in the real part of the first
0 C diagonal block of4;,, i.e., in the real part of the discrete differ-

N . ential operatorA;,. The next coarser gri@”’ and the interpo-
can be used as a preconditioner for the CG algorithm for cofgzion operatotZ?; for the coupled problem can now be intro-
plex symmetric systems [11]. The matiis, can be taken into 4,,ced. The se@” is defined as

account by switching to the Gauss—Seidel preconditioner

Z2 I

A, 0N /3 . Qf = uak. (16)
<(Bh)T C) <Z2> - <r2> (13)  This definition implies that the interpolation has the form
for Krylov subspace methods for nonsymmetric problems such Th — Ity 0 17
. : . - (17)
as GMRES or BICGSTAB [12]. The Gauss—Seidel precondi-

t?oning stepis more expensive than_ tha.‘t of Jacobi by mUItip”C_Where the second diagonal block denotes the identitf2{n
tion of the matrixB,, only. The application of the block Jacob|.|.he symmetry of4,, motivates one to define the restrictir’n’ﬁ’

and quss—8e|_del schemes requires solving a linear system ‘ggl?ranspose of the interpolation. The coarse grid equivalent of
coefficient matricesA;, andC at every step of the Krylov sub- A, is computed by a Galerkin product, resulting in

space method. As the size@fis much smaller than that &,
the cost of solving the linear system is negligible compared Ay By
with solving theA,, linear system. In solving th&;, system, BT C )
the AMG algorithm for complex symmetric systems developed
in [9] can be reused. The system can be solved either exactiydrereA y = I A, I, andBy = I}/ B,,.
approximately by applying a few (but fixed) number of cycles. In the solve phase, the hierarchy of coarser discretizations
Another alternative consists in making the accuracy of the innegnstructed in the setup phase is used to solve the given
AMG solve function of the residual norm of the outer Kryloinear system by multigrid cycling. In this phase, we perform
iteration. The resulting variable preconditioner can be accel@moothing on the magnetic variables only and leave the electric
ated by Flexible GMRES (FGMRES) [12], for instance. variables unchanged. Given aright-hand-side vedigrg) and

For the implementation of the above algorithms, we made ugestart solution(x},, y°) for the linear system (9), smoothing
of the block preconditioning framework and Krylov subspaceonsists of computing a modified magnetic right-hand-side
solvers available in PETSC. The interface between AMG atermf;, = f;, — B,,y° and applying Gauss—Seidel smoothing to
PETSC allows the (approximate) solution of thg within each the systen’A,x;, = £5,. The coarse grid correction is computed

Ay =THATY = <

step of the block-precondioner by AMG. by solving the linear system with matrix (18) by a direct solver.
If the two-grid scheme is applied recursively to solve this
V. ALGEBRAIC MULTIGRID FOR COUPLED PROBLEMS coarse grid system, a multigrid scheme is obtained. In our nu-

0 ltiarid hni f ina field-circui | dmerical experiments, we use this multigrid scheme as a precon-
bLl'r multigrid tec nllque_ or sfo \r/]mg Ieh —((j:|rfcmt cclagpe ditioner for the conjugate gradient algorithm for complex sym-
problems IS a generalization of the met_ od for Solving gfiayric systems [11]. For the implementation, we developed the
elliptic problem augmented by an algebraic equation found ihterface between AMG and PETSC mentioned in Section IV.
[5, Sec. 11.4]. Only the setup part of Stiben’s AMG code is used. To perform

Letthe Iir_1ear S.VSte”? (9).With (_:oefficientmatci% defined in the multigrid cycling, the multigrid framework within PETSC
(10) be a given fine grid discretization of the coupled |oroblerwals extended to accommodate the circuit relations.
Let Q" denote the set of fine grid degrees of freedom. The set

Q" embraces both the magnetic and electric variables. Denoting

. VI. PRACTICAL EXAMPLE
the former and the latter g, andQ’,, respectively, we have

To test the efficiency of the algorithm, a model of a 45-kW
Q" =qoh uQk. (14) induction machine is taken. The equipotential lines of the real



416

IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002

5500

5000

4500

4000+

)

3500

CPU time (secs.
n @
g 8
8 o

[ -8~ ILU/COCG 1
—#- Generalized AMG/COCG
2000 4

L P
1500r o
1000} E

500
20000 30000 40000 50000 60000
Number of finite element nodes

Fig. 3. CPU time of generalized algebraic multigrid and ILU preconditioned
conjugate gradient method for complex symmetric systems versus the number

Fig. 1. Equipotential lines of the real part of the computed vector potential of finite-element grid points.
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Fig. 2. Number of iterations of the block Jacobi and generalized algebraic

multigrid schemes versus the number of adaptive refinement step.

part of the computed magnetic vector potential are shown in[z]

VIl. CONCLUSION

We presented an algebraic multigrid preconditioner for time
harmonic field-circuit coupled problems. In the calculation of
an induction machine, the use of the multigrid preconditioner
resulted in a significant acceleration, compared with an ILU pre-
conditioned conjugate gradient solver.
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