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An Algebraic Multilevel Preconditioner for
Field-Circuit Coupled Problems

D. Lahaye, S. Vandewalle, and K. Hameyer

Abstract—Quasi-stationary magnetic field formulations are
often coupled with lumped parameter models for the driving
electrical system. The finite element discretization of such formu-
lations yields linear systems with a large sparse coefficient matrix
bordered by dense coupling blocks. The presence of these blocks
prevents the straightforward application of black box algebraic
multigrid solvers. We present a modified multigrid cycle that takes
the coupling blocks into account. The resulting algebraic multi-
grid solver is used as a preconditioner for the conjugate gradient
method for complex symmetric systems. We give evidence of the
efficiency of the new method for the calculation of an induction
motor.

Index Terms—Eddy currents, finite element methods, iterative
methods.

I. INTRODUCTION

H YBRID field-circuit coupled problems frequently arise in
electromagnetic engineering applications. In such prob-

lems, a differential equation problem for the magnetic field is
coupled with a linear system modeling the electrical excitations.
We consider two-dimensional (2-D) quasi-stationary magnetic
field problems and introduce the phasor of thecomponent of
the magnetic vector potential as field unknown. The electrical
circuit, on the other hand, is formulated in terms of linearly
independent Kirchoff current and voltage laws and gives rela-
tions between the currents and voltages in the electrically con-
ducting parts of the model. The field and circuit formulations are
coupled by the magnetically induced currents and voltages in
the conductors. The finite-element discretization of the coupled
problem results in large system of algebraic equations. Solving
such systems linear system forms a computational bottleneck
in finite-element models for technically relevant problems. Our
aim is to alleviate this bottleneck by using efficient algebraic
multigrid techniques.

II. FIELD-CIRCUIT COUPLED PROBLEMS

To formulate the field-circuit coupled problem, we consider
a 2-D domain partitioned into electrically conducting and
nonconducting regions. This domain represents for instance the
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cross section of an electrical machine or transformer. The con-
ducting region of is the union of the cross sections of stranded
and solid conductors and . Denoting the noncon-
duction region by , we have

(1)

We assume all electromagnetic quantities to vary sinusoidally
in time at low angular frequency. This allows us to write a
generic electromagnetic quantity as

(2)

where is the phasor of . With each stranded and solid con-
ductor, we associate the current and voltage drop and

, respectively. We denote the number of windings and
the area of the stranded conductor by and and the
length of all solid conductors by , respectively. Finally, we
denote by and the magnetic reluctivity and the electric con-
ductivity. The magnetic field problem is formulated using the
component of the magnetic vector potential. By introducing
the notation

(3)

the magnetic field problem on can be stated as

on

on

on (4)

supplied with appropriate boundary conditions [1]. This differ-
ential problem allows model saturation by using techniques ex-
plained in, e.g., [2]. It is discretized by first-order nodal finite
elements defined on adaptively constructed meshes of triangles
with characteristic mesh width. The discretization yields the
linear system of algebraic equations

(5)

where represents the discretized differential operator, and
where and correspond to the electrical excitations and the
discrete vector potential, respectively. The matrix is a sparse
complex symmetric matrix with spectrum lying in the first quad-
rant of the complex plane. For a given right-hand-side vector

, the system (5) can be solved for . In general, however,
the vector is unknowna priori as it is a function of way the
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conducting parts in are interconnected and connected to other
circuit elements. It is therefore necessary to take the electrical
circuit into account.

A topological method that allows us to obtain a description
of the circuit in terms of a maximum set of linearly independent
Kirchoff current and voltage laws is described in [3]. It operates
on a graph associated with the circuit and allows to treat ar-
bitrary interconnections of solid and stranded conductors. For
stationary currents, it yields the linear system

(6)

where the matrix represents the fundamental loop and cutset
equations associated with the tree[4] and where and
correspond to the known and unknown voltages and currents in
the circuit, respectively. The matrix is complex symmetric.

The electrical circuit system (6) needs to be generalized to
situations where branches are magnetically coupled by the fi-
nite-element model. The magnetically induced effects in con-
ductors must then be taken into account. This is done by adding
the term corresponding to the integral of the discrete
magnetic vector potential over the cross section of the solid and
stranded conductor to the left-hand side of (6) to obtain

(7)

The rectangular matrix allows us to rewrite the magnetic
source term in (5) in terms of the circuit unknowns as

(8)

The two linear systems (5) and (7) can therefore be written as

(9)

where the matrix is complex symmetric and has the fol-
lowing block structure:

(10)

The field-circuit coupling is thus performed without generating
any fill in the discrete differential operator . The dimension
of (up to a few hundred) is much smaller than that of (up
to one million). The matrix furthermore remains unchanged
as the mesh is adaptively refined.

III. A LGEBRAIC MULTIGRID

In this section, we briefly summarize the multigrid idea while
paying particular attention to algebraic multigrid methods.
For more detailed information, see [5] and [6]. Multigrid
methods are efficient iterative techniques for solving dis-
cretized partial differential equations. They complement the
action of a smoother on a given fine grid with the computation
of a correction on a coarser grid. The implementation of the
required coarser grid discretizations is cumbersome in realistic
engineering applications. Algebraic multigrid (AMG) solvers
[7] cure this problem by providing algorithms for the automatic
(i.e., without user intervention) construction of the coarser grid

problem. Since algebraic multigrid codes require no informa-
tion on the geometry of the model, it is easy to incorporate
them into existing finite-element simulation packages.

To describe algebraic multigrid formally, let denote the
set of nodes of a computational grid with typical measure of
the mesh width . The discretization of a scalar elliptic PDE on
this mesh results in a linear algebraic system . In
solving this system using AMG solvers, one distinguishes two
phases. In a setup phase, the algorithm constructs a hierarchy of
coarser meshes and the corresponding linear systems. In the cy-
cling phase, this hierarchy of discrete problems is used to solve
the problem by multigrid cycling. The setup phase consists of
the following three steps. First, a set of coarse grid points is se-
lected. Then, the restriction and interpolation operators mapping
from fine to coarse grid are constructed. Finally, a coarse grid
equivalent of the fine grid system matrix is constructed.

The selection of coarse grid points induces a partitioning
, where and denote the fine and coarse

grid points, respectively. The construction of this partitioning
is referred to as the C/F splitting of . The next coarser grid

is identified with .
After having constructed the C/F splitting, AMG computes

a matrix dependent interpolation . For both the coarsening
and the computation of the interpolation weights, AMG ex-
ploits information about the strength of coupling between the
nodes in the computational grid. This information is coded in
the system matrix . For symmetric problems the restriction
operator is defined as the transpose of the interpolation, i.e.,

. Having the intergrid transfer operators available,
the coarse grid equivalent of is computed by

(11)

The above procedure is applied recursively using as input
to construct the next coarser grid problem. The recursion termi-
nates if either the size of on some coarser level drops below
a prescribed number or if the fill-in produced by (11) in be-
comes too large.

Algebraic multigrid solvers were originally developed to
solve symmetric positive definite problems [8]. In [9], we
extended the applicability of AMG for solving 2-D quasi-sta-
tionary eddy-current magnetic field problems. These problems
yield linear systems with complex symmetric coefficient ma-
trices. To solve such problems by AMG, we base the selection
of the coarser grid and the computation of the interpolation
operator on the real part of the matrix. This interpolation is real,
and as a consequence, the coarse grid operatoris again
complex symmetric.

The straightforward application of AMG to system (9)
involving the matrix is hampered by the presence of the
submatrices and . These submatrices destroy the structure
of the real part of the system matrix for which AMG is known
to perform satisfactorily. In developing performant iterative
schemes for solving (9), we first tried to reuse an existing
AMG code without altering its black-box nature. We did so by
incorporating the AMG code in block Jacobi and Gauss–Seidel
preconditioning schemes. In an attempt to improve this ap-
proach, we generalized the AMG scheme. In this generalized
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scheme, the sequence of coarser grids is built based on the real
part of the submatrix , and the matrices and are taken
into account on the coarsest grid and in the cycling phase. The
block preconditioning and generalized AMG approaches will
be discussed in Sections IV and V, respectively.

In all our numerical experiments, we make use of the AMG
code developed by [7]. For the implementation of the algorithms
we will present in this paper, we wrote an interface that allows
to call this AMG code from within PETSC [10].

IV. BLOCK PRECONDITIONING SCHEMES

A first approach in reusing AMG for solving (9) is through
the use ofblockpreconditioning. The block Jacobi scheme

(12)

can be used as a preconditioner for the CG algorithm for com-
plex symmetric systems [11]. The matrix can be taken into
account by switching to the Gauss–Seidel preconditioner

(13)

for Krylov subspace methods for nonsymmetric problems such
as GMRES or BiCGSTAB [12]. The Gauss–Seidel precondi-
tioning step is more expensive than that of Jacobi by multiplica-
tion of the matrix only. The application of the block Jacobi
and Gauss–Seidel schemes requires solving a linear system with
coefficient matrices and at every step of the Krylov sub-
space method. As the size ofis much smaller than that of ,
the cost of solving the linear system is negligible compared
with solving the linear system. In solving the system,
the AMG algorithm for complex symmetric systems developed
in [9] can be reused. The system can be solved either exactly or
approximately by applying a few (but fixed) number of cycles.
Another alternative consists in making the accuracy of the inner
AMG solve function of the residual norm of the outer Krylov
iteration. The resulting variable preconditioner can be acceler-
ated by Flexible GMRES (FGMRES) [12], for instance.

For the implementation of the above algorithms, we made use
of the block preconditioning framework and Krylov subspace
solvers available in PETSC. The interface between AMG and
PETSC allows the (approximate) solution of the within each
step of the block-precondioner by AMG.

V. ALGEBRAIC MULTIGRID FOR COUPLEDPROBLEMS

Our multigrid technique for solving field-circuit coupled
problems is a generalization of the method for solving an
elliptic problem augmented by an algebraic equation found in
[5, Sec. 11.4].

Let the linear system (9) with coefficient matrix defined in
(10) be a given fine grid discretization of the coupled problem.
Let denote the set of fine grid degrees of freedom. The set

embraces both the magnetic and electric variables. Denoting
the former and the latter by and , respectively, we have

(14)

Each variable in corresponds to a finite-element mesh point.
The number of elements of equals the number of loop and
cutset equations. Next, we describe a generalized AMG algo-
rithm for solving the given linear system. We will first give de-
tails of the two-grid variant of our algorithm. In doing so, we
discuss the setup and the solve phase separately.

We coarsen the set is such a way that the electric degrees
of freedom are in the coarse grid, i.e.,

(15)

The magnetic degrees of freedom are split into coarse and
fine ones denoted by and , respectively. The magnetic
coarse grid is identified with . AMG constructs this
splitting and the magnetic interpolation mapping from
to using information contained in the real part of the first
diagonal block of , i.e., in the real part of the discrete differ-
ential operator . The next coarser grid and the interpo-
lation operator for the coupled problem can now be intro-
duced. The set is defined as

(16)

This definition implies that the interpolation has the form

(17)

where the second diagonal block denotes the identity on.
The symmetry of motivates one to define the restriction
as transpose of the interpolation. The coarse grid equivalent of

is computed by a Galerkin product, resulting in

(18)

where , and .
In the solve phase, the hierarchy of coarser discretizations

constructed in the setup phase is used to solve the given
linear system by multigrid cycling. In this phase, we perform
smoothing on the magnetic variables only and leave the electric
variables unchanged. Given a right-hand-side vector and
a start solution for the linear system (9), smoothing
consists of computing a modified magnetic right-hand-side
term and applying Gauss–Seidel smoothing to
the system . The coarse grid correction is computed
by solving the linear system with matrix (18) by a direct solver.

If the two-grid scheme is applied recursively to solve this
coarse grid system, a multigrid scheme is obtained. In our nu-
merical experiments, we use this multigrid scheme as a precon-
ditioner for the conjugate gradient algorithm for complex sym-
metric systems [11]. For the implementation, we developed the
interface between AMG and PETSC mentioned in Section IV.
Only the setup part of Stüben’s AMG code is used. To perform
the multigrid cycling, the multigrid framework within PETSC
was extended to accommodate the circuit relations.

VI. PRACTICAL EXAMPLE

To test the efficiency of the algorithm, a model of a 45-kW
induction machine is taken. The equipotential lines of the real
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Fig. 1. Equipotential lines of the real part of the computed vector potential.

Fig. 2. Number of iterations of the block Jacobi and generalized algebraic
multigrid schemes versus the number of adaptive refinement step.

part of the computed magnetic vector potential are shown in
Fig. 1. The final mesh was obtained after three adaptive refine-
ment steps and contains a total of 118 802 elements and 59 574
nodes. The electrical circuit is modeled by 148 equations.

For this example, we compare the performance of the block
Jacobi and the generalized AMG scheme. Both methods are ac-
celerated by the conjugate gradient method. In the block Jacobi
preconditioner, we approximately solve the linear system by
applying just one V multigrid cycle with one pre- and one post-
smoothing step. The same cycle is used in the generalized AMG
scheme. Hence, both algorithms have about the same computa-
tional complexity per iteration step. In Fig. 2, we plotted the
number of iterations required by both schemes to reduce the
residual by a factor of 10 . This figure shows that the number
of iterations required is mesh-width independent. The general-
ized AMG scheme is superior to the block Jacobi scheme in
terms of number of iterations by a factor of about 2. In Fig. 3,
we compare the CPU time required by the generalized AMG
scheme with a standard ILU preconditioner from PETSC. This
figure shows that the generalized AMG scheme yields a consid-
erable speedup that becomes more significant with increasing
mesh size. On the finest grid considered in this test, AMG speeds
up calculations by a factor of almost 4.

Fig. 3. CPU time of generalized algebraic multigrid and ILU preconditioned
conjugate gradient method for complex symmetric systems versus the number
of finite-element grid points.

VII. CONCLUSION

We presented an algebraic multigrid preconditioner for time
harmonic field-circuit coupled problems. In the calculation of
an induction machine, the use of the multigrid preconditioner
resulted in a significant acceleration, compared with an ILU pre-
conditioned conjugate gradient solver.
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