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A Multiconductor Model for Finite-Element
Eddy-Current Simulation

Herbert De Gersem and Kay Hameyer

Abstract—The stranded-conductor finite-element model does
not account for the skin and proximity effects in a multiconductor
system. The solid conductor model considers the true geometry, all
the individual conductors, and their connections but may lead to
unmanageably huge models. The multiconductor model proposed
here, does not necessarily consider all geometrical details but in-
stead, discretizes the inner geometry and voltage drop and enforces
the typical current redistribution in multiconductor configurations
in a weak sense. The magnetic and electric meshes are indepen-
dently and adaptively refined which results in an optimal error
control and accurate results for relatively small models.

Index Terms—Circuit simulation, eddy currents, finite element
methods, windings.

I. INTRODUCTION

M ULTICONDUCTOR windings are sets of conductors,
electrically insulated from each other and connected in

series or parallel. The individual conductors experience skin and
proximity effects, characterized by theskin depth

(1)

where is the frequency, is the permeability, and is the
conductivity. The skin depth may be different in theand
direction due to anisotropic permeabilities. The characteristic
extents of a single wire in the multiconductor system with re-
spect to the main axes are denoted byand . If
and , the stranded-conductor model is appropriate [1].
If and , impedance boundary conditions are
commonly applied [2]. If , , and are of the same order
of magnitude, the skin effect is resolved by eddy-current simu-
lation using the solid conductor model. The unidirectional skin
effect as observed in foil conductors, i.e., and of the
same order of magnitude as, is considered in [3] and [4]. These
four modeling approaches are limiting cases for particular kinds
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Fig. 1. Application range of the solid, stranded, foil, and multiconductor
models and impedance boundary conditions.

of current redistribution (Fig. 1). In many models, the influence
of the skin effect on the global behavior of the model is not neg-
ligible although its local influence does not have to be computed
in detail.

Multiconductor systems arise in almost all electrical energy
transducers. The devices may feature a large number of multi-
conductor systems, each consisting of a considerable number
of turns. This may hamper the simulation of the overall de-
vice. Several model reduction techniques for multiconductor
systems exist, e.g., analytical macroelements [5], inner node
elimination [6] and parameter extraction [7]. They constitute an
a priori model reduction, which may hinder adaptive error con-
trol during numerical simulation. In this paper, it is suggested to
approximate the troublesome geometries by an additional dis-
cretization for the voltage and to incorporate this in the mag-
netic finite-element (FE) model. An error estimator adaptively
refines the multiconductor model during the simulation.

II. M AGNETODYNAMIC MODEL

For convenience, a two-dimensional time-harmonic formu-
lation is considered. The derivation of a multiconductor model
for three-dimensional FE models, transient formulations, or
anisotropic materials is similar. The magnetodynamic formula-
tion is

(2)

with the pulsation, the length of the model, the phasor
of the component of the magnetic vector potential and
the phasor of the voltage drop between front and rear ends of
the model. The partial differential equation is discretized on the
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device cross section by linear, triangular FEs ,
yielding the system of equations

(3)

(4)

(5)

and the degrees of freedom (DOFs) for .

III. M ODELING ASSUMPTIONS

Consider a multiconductor with cross section ,
consisting of conductors with cross sections ,

and connected in series. The cross sections
may have different shapes but have the same area. The cross-
sectional area of is . The union of all conductor cross
sections, , is contained in but may be
smaller than . The difference is occupied by in-
sulation material, cooling ducts, and gaps which are supposed to
be uniformly distributed over and to have a homogeneous
permeability and a zero conductivity. The voltage drop is
aligned with the direction, is constant over each and is
zero in

in

in .
(6)

The voltage drop differs from one conductor to the other due to
the vicinity of ferromagnetic cores and because of inhomoge-
neous conductivities, e.g., due to local heating.

IV. CONTINUOUS MULTICONDUCTOR MODEL

The true multiconductor model obeys (2) and an integral con-
straint over each ,

(7)

The voltage drop across the multiconductor is

(8)

Consider now the limiting case in which tends to infinity
and, hence, becomes very small. Still, suppose all conduc-
tors to have the same cross-section area and the conductive and
nonconductive parts of to be uniformly mixed. The insu-
lation material is not explicitly considered in the model. The
material parameters in the magnetic equations (2), (4), and (5)
are replaced by the homogenized parameters

(9)

(10)

with the fill factor

(11)

Fig. 2. Cross section of the multiconductor, the magnetic mesh, the electric
mesh, and three electric shape functions.

accounting for the nonconductive regions included in . The
true constraints (7) tend to the continuous constraint

in

(12)
The voltage across the overall multiconductor is obtained by
averaging over and multiplying by

(13)

It may be beneficial to model a multiconductor system with a
considerable number of turns by the continuous model (12) and
(13) rather than the true relations (7) and (8) which require the
geometry of each individual conductor to be considered.

V. DISCRETEMULTICONDUCTOR MODEL

To discretize the continuous multiconductor model, an addi-
tional mesh for the voltage drop is constructed (Fig. 2). To sim-
plify the implementation, a tensor grid is preferred.
is resolved by electric shape functions

(14)

with the associated DOFs. Equation (5) becomes

(15)

A weak formulation of the multiconductor model is obtained by
weighting (12) by the electric shape functions

(16)
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The voltage across the overall multiconductor is

(17)

The weak formulation of the magnetodynamic problem (3), the
weak formulation of the current constraints (16), and the inte-
gration of the discrete voltage drop (17) are assembled into the
coupled system of equations

(18)

with a factor symmetrizing the system. The system
has the nature of a mixed formulation [8]. Because the coef-
ficients and scale differently, it is recommended to
apply an explicit diagonal scaling of (18) before solving. The
system is solved by a Quasi-Minimal Residual method adapted
to complex symmetric systems [9], preconditioned by succes-
sive over relaxation.

The multiconductor model can be coupled to a circuit model
accounting for active and passive components outside the finite-
element model. The treatment of arbitrary circuit connections
follows the topological approach presented in [10].

VI. A DAPTIVE MESH REFINEMENT

The electric mesh does not coincide with the magnetic mesh
nor with the true multiconductor geometry. Therefore, adaptive
mesh refinement can be applied independently. The possibility
of independent error control is one of the most attractive fea-
tures of the multiconductor model. The magnetic mesh is refined
based on indications of large eddy currents and large ferromag-
netic saturation. The error indicator for the electric mesh detects
large variations of the voltage drop.

To preserve the consistency of the multiconductor model, the
discrete weak formulation (16) has to converge towards the true
model (7) rather than towards the continuous representation
(12). As a consequence, the supports of the electric shape
functions have to converge towards the single-conductor cross
sections. This is different from a conventional discretization
where convergence corresponds to a vanishing mesh size. The
consistency of the electric discretization of the multiconductor
model is guaranteed by the following procedure. At places
where refinement would bring up electric elements smaller than
the extent of a single conductor, the true geometry is restored
(Fig. 3). The discrete formulation (16) implicitly incorporates
the true model (7) if a single, constant shape function is
assigned to each conductor that shows up in because of
refinement. The parts of the insulation that are restored by the
refinement procedure, are expelled from the electric mesh. As
a consequence, the electric mesh may become disconnected
and the fill factor has to be adapted accordingly. The limiting
case when the voltage drop is discretized by constant
electric shape functions defined at , , and
the fill factor is one, corresponds to the explicit modeling of
each of the individual conductors as a solid conductor, and,
hence, constitutes the true multiconductor model (7) and (8).
For technical models, however, a sufficient accuracy is already

Fig.3. Consistent adaptive refinement of the electric tensor grid when the
error estimator indicates large variations of the voltage drop at the left upper
corner of the multiconductor cross section (at a certain point, further refinement
corresponds to restoring the original geometry).

achieved when the electric mesh is much coarser than the true
geometry. If local effects would become important, the error
indicator will detect them and invoke substantial refinement at
those places, probably leading to a local recovery of the true
geometry of the multiconductor system.

VII. N ONMATCHING INTEGRATIONS

The efficiency of the multiconductor model is strongly re-
lated to the flexibility of selecting and refining the meshes. It
is recommended to allow an independent construction and re-
finement of both meshes. Hence, the supports of and

, in general, do not match. This considerably hinders
the evaluation of the hybrid integrals in . A numerical inte-
gration scheme, e.g., Gaussian quadrature, encounters problems
to select appropriate integration points or may require a huge
number of points in order to sample both meshes at a sufficient
rate. Here, a semi-analytical technique is favored. A composite
mesh is built by gathering all vertices and edges of both the mag-
netic and the electric mesh. The intersections of the edges of
the different meshes with respect to each other have to be com-
puted with a sufficient accuracy, preferably using exact arith-
metic. Both and can be exactly represented
on the composite mesh on which the multiplications and inte-
grations can then be performed exactly. The required compu-
tation time is substantial but is still acceptable when compared
with the overall computation time. To avoid hybrid integrals,
one could use the composite mesh for both electric and mag-
netic discretization. This approach, however, does not pay off
because the substantially larger system of equation would elim-
inate the efficiency of the multiconductor model.

VIII. C ONVERGENCE OF THEMULTICONDUCTOR

DISCRETIZATION

The convergence of the mixed discretization technique is
studied for a model problem. The multiconductor contains 250
conductors. All feature the same conductivity and permeability.
The conductors are electrically insulated from each other, are
connected in series, and carry an alternating current. No flux
leaves the model. Within each conductor, the magnetic field
is expressed by the analytical solution of (2) for a rectangular
domain. The analytical solution for the multiconductor system
is derived by applying the interface conditions at the borders
of the conductors and requiring the current to be the same in
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Fig. 4. Convergence of the discretization error of the magnetic vector potential
field of the multiconductor model (the dashed line is a line of constant error).

Fig. 5. (a) Geometry, (b) real, and (c) imaginary components of the magnetic
flux in a single-layer stator slot at 50 Hz. (d) Real and (e) imaginary components
of the magnetic flux in the multiconductor model at 500 Hz.

each conductor. The discretization error of the magnetic vector
potential field obtained by the proposed multiconductor model,
is measured in the L2-norm with respect to the analytical
solution (Fig. 4). The error decays when the magnetic and/or
electric meshes are refined. The dashed line denotes loci for
which the error is identical. The experiment indicates that the
discretization error depends more on the discretization of the
magnetic field than on the discretization of the electric voltage
drop. As a consequence, it is sometimes more advantageous to
apply a finer magnetic mesh than to consider all geometrical
details of the multiconductor system.

IX. EXAMPLE: MACHINE WINDINGS

The multiconductor model is applied to simulate the har-
monic losses in induction machine windings [11] (Fig. 5). Since
these devices are supplied by variable frequency, the relative im-
portance of the higher harmonic distortion increases and the ad-
ditional joule losses are not negligible. These effects are com-
monly taken into account in analytical models by the frequency-
dependent eddy-current factor which can be provided by a FE
model of a single stator slot [12]. A leakage flux impinging on
the conductor is applied to the model by a difference in magnetic
vector potential between the top and the bottom of the slot. A
conventional model considers the true geometry consisting of
the conductors, the insulation, and the cooling ducts. It treats
the coil as a series connection of a number of solid conductors,
each with their own unknown voltage. For many cases, the mul-

Fig. 6. Harmonic losses in a stator winding of an induction machine.

ticonductor model offers a sufficient accuracy while avoiding an
excessive amount of mesh nodes and voltage unknowns. At 50
Hz, no significant skin effect is observed. At 500 Hz, substantial
losses are introduced. The multiconductor model equipped with
independent mesh refinement and external circuit coupling, en-
ables the simulation of the model for all possible frequencies by
the same conductor model (Fig. 6).

X. CONCLUSION

The multiconductor model developed here, enables the sim-
ulation of complicated coil configurations with relatively small
models by using an additional discretization for the conductor’s
voltage drop. It offers more modeling flexibility when com-
pared with the solid and stranded-conductor models. The au-
tomated error control and independent mesh refinement yields
small models while guaranteeing the prescribed accuracy.
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