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An Algebraic Multilevel Preconditioner for Field-Circuit
Coupled Problems

D. Lahaye, S. Vandewalle and K. Hameyer

Abstract— Quasi stationary magnetic field formulations are often
coupled with lumped parameter models for the driving electrical system.
The finite element discretization of such formulations yields linear systems
with a large sparse coefficient matrix bordered by dense coupling blocks.
The presence of these blocks prevents the straightforward application of
black box algebraic multigrid solvers. We present a modified multigrid
cycle that takes the coupling blocks into account. The resulting algeb-
raic multigrid solver is used as a preconditioner for the conjugate gradient
method for complex symmetric systems. We give evidence of the efficiency
of the new method for the calculation of an induction motor.

Index Terms—eddy currents, finite element methods, iterative methods

I. INTRODUCTION

Hybrid field-circuit coupled problems frequently arise in elec-
tromagnetic engineering applications. In such problems a differ-
ential equation problem for the magnetic field is coupled with a
linear system modeling the electrical excitations. We consider
two dimensional quasi stationary magnetic field problems and
introduce the phasor of the z-component of the magnetic vector
potential as field unknown. The electrical circuit on the other
hand is formulated in terms of linearly independent Kirchoff
current and voltage laws and gives relations between the cur-
rents and voltages in the electrically conducting parts of the
model. The field and circuit formulations are coupled by the
magnetically induced currents and voltages in the conductors.
The finite element discretization of the coupled problem results
in large system of algebraic equations. Solving such systems
linear system forms a computational bottleneck in finite element
models for technically relevant problems. Our aim is to alleviate
this bottleneck by using efficient algebraic multigrid techniques.

II. FIELD-CIRCUIT COUPLED PROBLEMS

To formulate the field-circuit coupled problem, we consider a
two dimensional domain
 partitioned into electrically conduct-
ing and non-conducting regions. This domain represents for in-
stance the cross-section of an electrical machine or transformer.
The conducting region of 
 is the union of the cross-sections of
stranded and solid conductors 
str; p and 
sol; q . Denoting the
non-conduction region by 
core, we have


 = ([p
str; p) [ ([q
sol; q) [ 
core : (1)
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We assume all electromagnetic quantities to vary sinusoidally
in time at low angular frequency !. This allows us to write a
generic electromagnetic quantity F (x; t) as

F (x; t) = bF (x) e j ! t ; (2)

where bF is the phasor of F . With each stranded and solid con-
ductor we associate the current and voltage drop 4 Îstr;p and
4V̂sol;q respectively. We denote the number of windings and
the area of the stranded conductor by N t;p and Sstr;p and the
length of all solid conductors by `z respectively. Finally, we
denote by � and � the magnetic reluctivity and the electric con-
ductivity. The magnetic field problem is formulated using the
z-component of the magnetic vector potential Âz. By introdu-
cing the notation

L(Âz) = �
@
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; (3)

the magnetic field problem on 
 can be stated as

L(Âz) + j ! � Âz =
�

`z
4 V̂sol; q on 
sol; q

L(Âz) =
Nt; p

Sstr; p
4 Îstr; p on 
str; p

L(Âz) = 0 on 
core ;

(4)

supplied with appropriate boundary conditions [1]. This differ-
ential problem allows to model saturation by using techniques
explained in e.g. [2]. It is discretized by first order nodal finite
elements defined on adaptively constructed meshes of triangles
with characteristic mesh width h. The discretization yields the
linear system of algebraic equations

Ah xh = fh ; (5)

where Ah represents the discretized differential operator and
where fh and xh correspond to the electrical excitations and the
discrete vector potential respectively. The matrix Ah is a sparse
complex symmetric matrix with spectrum lying in the first quad-
rant of the complex plane. For a given right-hand side vector
fh, the system (5) can be solved for xh. In general however,
the vector fh is unknown a priori as it is a function of way the
conducting parts in 
 are interconnected and connected to other
circuit elements. It is therefore necessary to take the electrical
circuit into account.

A topological method that allows to obtain a description of
the circuit in terms of a maximum set of linearly independent
Kirchoff current and voltage laws is described in [3]. It oper-
ates on a graph T associated with the circuit and allows to treat



arbitrary interconnections of solid and stranded conductors. For
stationary currents, it yields the linear system

Cy = g ; (6)

where the matrix C represents the fundamental loop and cutset
equations associated with the tree T [4], and where g and y

correspond to the known and unknown voltages and currents in
the circuit respectively. The matrix C is complex symmetric.

The electrical circuit system (6) needs to be generalized to
situations where branches are magnetically coupled by the finite
element model. The magnetically induced effects in conductors
must then be taken into account. This is done by adding the term
(Bh)

T xh corresponding to the integral of the discrete magnetic
vector potential over the cross-section of the solid and stranded
conductor, to the left-hand side of (6) to obtain

(Bh)
T xh +Cy = g : (7)

The rectangular matrixBh allows to rewrite the magnetic source
term fh in (5) in terms of the circuit unknowns as

fh = Bh y : (8)

The two linear systems (5) and (7) can therefore be written as
the single linear system

Ah

�
xh
y

�
=

�
0
g

�
; (9)

where the matrix Ah is complex symmetric and has the follow-
ing block structure

Ah =

�
Ah Bh

(Bh)
T C

�
: (10)

The field-circuit coupling is thus performed without generating
any fill in the discrete differential operator Ah. The dimension
of C (up to a few hundred) is much smaller than that of Ah (up
to one million). The matrix C furthermore remains unchanged
as the mesh is adaptively refined.

This paper deals with solving the linear system (9) efficiently.

III. ALGEBRAIC MULTIGRID

In this section we briefly summarize the multigrid idea while
paying particular attention to algebraic multigrid methods. For
more detailed information we refer to the text books [5], [6].
Multigrid methods are efficient iterative techniques for solving
discretized partial differential equations. They complement the
action of a smoother on a given fine grid with the computation
of a correction on a coarser grid. The implementation of the
required coarser grid discretizations is cumbersome in realistic
engineering applications. Algebraic multigrid (AMG) solvers
[7] cure this problem by providing algorithms for the automatic
(i.e. without user intervention) construction of the coarser grid
problem. As algebraic multigrid codes require no information
on the geometry of the model, it is easy to incorporate them into
existing finite element simulation packages.

To describe algebraic multigrid formally, let 
h denote the
set of nodes of a computational grid with typical measure of

the mesh width h. The discretization of a scalar elliptic PDE
on this mesh results in a linear algebraic system Ah xh = bh.
In solving this system using AMG solvers, one distinguishes
two phases. In a setup phase, the algorithm constructs a hier-
archy of coarser meshes and the corresponding linear systems.
In the cycling phase, this hierarchy of discrete problems is used
to solve the problem by multigrid cycling.

The setup phase consists of the following three steps. First
a set of coarse grid points is selected. Then the restriction and
interpolation operators mapping from fine to coarse grid are con-
structed. Finally, a coarse grid equivalent of the fine grid system
matrix is constructed.

The selection of coarse grid points induces a partitioning

h = Ch [ F h, where Ch and F h denote the fine and coarse
grid points respectively. The construction of this partitioning is
referred to as the C/F splitting of 
h. The next coarser grid 
H

is identified with Ch.
After having constructed the C/F splitting, AMG computes

a matrix dependent interpolation I hH . For both the coarsening
and the computation of the interpolation weights, AMG exploits
information about the strength of coupling between the nodes in
the computational grid. This information is coded in the system
matrix Ah. For symmetric problems the restriction operator IHh
is defined as the transpose of the interpolation, i.e. IHh = (IhH )

T .
Having the intergrid transfer operators available, the coarse grid
equivalent of Ah is computed by a Galerkin product

AH = IHh Ah I
h
H : (11)

The above procedure is applied recursively using as input AH

to construct the next coarser grid problem. The recursion ter-
minates if either the size of AH on some coarser level drops
below a prescribed number or if the fill-in produced by (11) in
AH becomes too large.

Algebraic multigrid solvers were originally developed to
solve symmetric positive definite problems [8]. In [9], we ex-
tended the applicability of AMG for solving two dimensional
quasi stationary eddy current magnetic field problems. These
problems yield linear systems with complex symmetric coeffi-
cient matrices. To solve such problems by AMG, we base the
selection of the coarser grid and the computation of the interpol-
ation operator on the real part of the matrix. This interpolation is
real, and as a consequence, the coarse grid operatorAH is again
complex symmetric. Once the coarse grid problem is construc-
ted, multigrid cycling in complex arithmetic can be performed.

The straightforward application of AMG to system (9) in-
volving the matrix Ah is hampered by the presence of the sub-
matrices Bh and C. These submatrices destroy the structure
of the real part of the system matrix for which AMG is known
to perform satisfactorily. In developing performant iterative
schemes for solving (9), we first tried to reuse an existing AMG
code without altering its black-box nature. We did so by incor-
porating the AMG code in block Jacobi and Gauss-Seidel pre-
conditioning schemes. In an attempt to improve this approach,
we generalized the AMG scheme. In this generalized scheme
the sequence of coarser grids is built based on the real part of
the submatrix Ah and the matrices Bh and C are taken into ac-
count on the coarsest grid and in the cycling phase. The block



preconditioning and generalized AMG approaches will be dis-
cussed in Sections IV and V respectively.

In all our numerical experiments we make use of the AMG
code developed by K. Stüben [7]. For the implementation of the
algorithms we will present in this paper, we wrote an interface
that allows to call this AMG code from within PETSC [10].

IV. BLOCK PRECONDITIONING SCHEMES

A first approach in reusing AMG for solving (9) is through
the use of block preconditioning techniques. The block Jacobi
scheme �

Ah 0
0 C

��
z1
z2

�
=

�
r1
r2

�
(12)

can be used as a preconditioner for the CG algorithm for com-
plex symmetric systems [11]. The matrix Bh can be taken into
account by switching to the non-symmetric Gauss-Seidel pre-
conditioner�

Ah 0
(Bh)

T C

��
z1
z2

�
=

�
r1
r2

�
: (13)

for Krylov subspace methods for non symmetric problems such
as GMRES or BiCGSTAB [12]. The Gauss-Seidel precondi-
tioning step is more expensive than that of Jacobi by multiplica-
tion of the matrix Bh only. The application of the block Jacobi
and Gauss-Seidel schemes requires solving a linear system with
coefficient matrices Ah and C at every step of the Krylov sub-
space method. As the size ofC is much smaller than that ofAh,
the cost of solving the C linear system is negligible compared
to solving the Ah linear system. In solving the Ah system, the
AMG algorithm for complex symmetric systems developed in
[9] can be reused . The system can be solved either exactly or
approximately by applying a few (but fixed) number of cycles.
Another alternative consists in making the accuracy of the inner
AMG solve function of the residual norm of the outer Krylov it-
eration. The resulting variable preconditioner can be accelerated
by Flexible GMRES (FGMRES) [12] for instance.

For the implementation of the above algorithms, we made use
of the block preconditioning framework and Krylov subspace
solvers available in PETSC. The interface between AMG and
PETSC allows to (approximately) solve theAh within each step
of the block-precondioner by AMG.

V. ALGEBRAIC MULTIGRID FOR FIELD-CIRCUIT COUPLED

PROBLEMS

Our multigrid technique for solving field-circuit coupled
problems is a generalization of the method for solving an el-
liptic problem augmented by an algebraic equation found in [5,
Section 11.4].

Let the linear system (9) with coefficient matrixAh defined in
(10) be a given fine grid discretization of the coupled problem.
Let 
h denote the set of fine grid degrees of freedom. The set

h embraces both the magnetic and electric variables. Denoting
the former and the latter by 
h

M and 
h
E respectively, we have

that


h = 
h
M [ 
h

E : (14)

Each variable in 
h
M corresponds to a finite element mesh point.

The number of elements of 
h
E equals the number of loop and

cutset equations. Next we describe a generalised AMG al-
gorithm for solving the the given linear system. We will first
give details of the two-grid variant of our algorithm. In doing
so, we discuss the setup and the solve phase separately.

We coarsen the set 
h is such a way that the electric degrees
of freedom 
h

E are in the coarse grid, i.e.,


h
E � 
H : (15)

The magnetic degrees of freedom 
h
M are split into coarse and

fine ones denoted by Ch
M and F h

M respectively. The magnetic
coarse grid 
H

M is identified with Ch
M . AMG constructs this

splitting and the magnetic interpolation I hH mapping from 
H
M

to
h
M using information contained in the real part of the first di-

agonal block of Ah, i.e. in the real part of the discrete differen-
tial operatorAh. The next coarser grid
H and the interpolation
operator IhH for the coupled problem can now be introduced.
The set 
H is defined as follows


H = 
H
M [ 
h

E : (16)

This definition implies that the interpolation I hH has the follow-
ing block diagonal form

I
h
H =

�
IhH 0
0 I

�
; (17)

where the second diagonal block denotes the identity on 
h
E .

The symmetry of Ah motivates one to define the restriction IHh
as transpose of the interpolation. The coarse grid equivalent of
Ah is computed by a Galerkin product, resulting in

AH = IHh Ah I
h
H =

�
AH BH

(BH )
T C

�
; (18)

where AH = IHh Ah I
h
H and BH = IHh Bh .

In the solve phase, the hierarchy of coarser discretizations
constructed in the setup phase is used to solve the given linear
system by multigrid cycling. In this phase, we perform smooth-
ing on the magnetic variables only and leave the electric vari-
ables unchanged. Given a right-hand side vector (fh; g) and
a start solution (x0h; y

0) for the linear system (9), smoothing
consists of computing a modified magnetic right-hand side term
fh = fh � Bh y

0 and applying Gauss-Seidel smoothing to the
system Ah xh = fh. The coarse grid correction is computed by
solving the linear system with matrix (18) by a direct solver.

If the two-grid scheme is applied recursively to solve this
coarse grid system, a multi-grid scheme is obtained. In our nu-
merical experiments we use this multigrid scheme as a precon-
ditioner for the conjugate gradient algorithm for complex sym-
metric systems [11].

For the implementation of the above algorithm, we developed
the interface between AMG and PETSC already mentioned in
Section IV. In the resulting code only the setup part of Stüben’s
AMG code is used. To perform the multigrid cycling, the mul-
tigrid framework within PETSC was extended to accommodate
the circuit relations.



VI. A PRACTICAL EXAMPLE

To test the efficiency of the algorithm, a model of a 45kW
induction machine is taken as example. The equipotential lines
of the real part of the computed magnetic vector potential are
shown in Fig.1. The final mesh was obtained after three adaptive
refinement steps and contains a total of 118802 elements and
59574 nodes. The electrical circuit is modeled by 148 equations.

For this example we compare the performance of the block
Jacobi and the generalized AMG scheme. Both methods are ac-
celerated by the conjugate gradient method. In the block Jacobi
preconditioner, we approximately solve theAh linear system by
applying just one V multigrid cycle with one pre and one post
smoothing step. The same cycle is used in the generalized AMG
scheme. Hence, both algorithms have about the same computa-
tional complexity per iteration step. In Fig. 2 we plotted the
number of iterations required by both schemes to reduce the re-
sidual by a factor of 10�12. This figure shows that the number
of iterations required by both schemes is mesh-width independ-
ent. It also shows that the generalized AMG scheme is superior
to the block Jacobi scheme in terms of number of iterations by
a factor of about 2.

In Fig. 3 we compare the CPU time required by the gener-
alized AMG scheme with a standard ILU preconditioner taken
from PETSC. This figure shows that the use of the generalized
AMG scheme yields a considerable speedup that becomes more
significant with increasing mesh size. On the finest grid con-
sidered in this numerical test, AMG speeds up calculations by a
factor of almost 4.

Fig. 1. Equipotential lines of the real part of the computed vector potential.

VII. CONCLUSIONS

We presented an algebraic multigrid preconditioner for time
harmonic field-circuit coupled problems. In the calculation of
an induction machine, the use of the multigrid preconditioner
resulted in a significant acceleration compared to an ILU pre-
conditioned conjugate gradient solver.
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Fig. 2. Number of iterations of the block Jacobi and generalized algebraic
multigrid schemes versus the number of adaptive refinement step.
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Fig. 3. CPU time of generalized algebraic multigrid and ILU preconditioned
conjugate gradient method for complex symmetric systems versus the num-
ber of finite element grid points.
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