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INTRODUCTION

Polynomials fail to give suitable approximations for
strongly non-linear functional mappings. In that case,
neural networks can preferably be used. Over the past
decade, their popularity steadily increased within
various engineering disciplines. Here, it is shown that
neural networks must not always be preferred over
traditional polynomials. When modeling typical non-
linear and anisotropic magnetic properties for e.g. finite
element simulations, both approximations are fairly
competitive.

MATERIAL DATA

The neural network model and the polynomial model
are compared for two distinct material properties:
• The non-linear magnetization curve of a non grain-

oriented steel. It is a smooth single input single
output functional mapping )(HfB = , with B the

magnetic induction [T] and H the magnetic field
strength [A/m].

• The non-linear and anisotropic reluctivity curves of
a grain-oriented steel (Fig. 1). It is a smooth single
input double output functional mapping

( )θ=ν ,Bf , with ν the reluctivity [Am/Vs] and θ
the magnetization angle [°].

For accuracy reasons, the magnetic field strength and
the reluctivity are transformed in a first step by a base
ten logarithm. In a next step, all variables are
normalized.

POLYNOMIAL MODELS

The non-linear magnetization curve is modeled by a

polynomial of order N :
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By applying Horner’s rule, it can be proven that this
polynomial can be evaluated with 2N floating point
operations (flops). The model has N+1 degrees of
freedom (dofs). The number of flops per dof is denoted
by the ratio R. For large N, this ratio approaches 2.

The non-linear and anisotropic magnetization curves are
modeled by a two-dimensional polynomial of order N:
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This polynomial is evaluated similar to Horner’s rule
within 142 −+ NN  flops. It contains ( )( ) 2/21 ++ NN

dofs. For large N, the ratio R approaches the value 2.

NEURAL NETWORK MODELS

Among the large amount of neural network types that
can be used for regression purposes, the two-layer
perceptron is selected for the comparison. According to
Bishop (1), this perceptron is mathematically described
as
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for both problems respectively, with p and q the
network weights. The function φ equals

Figure 1: The non-linear and anisotropic reluctivity of
a grain-oriented steel.
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Figure 2: The number of flops per dof for
(a) the single input problem;
(b) the double input problem.
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It represents the non-linear transformation units or
neurons in the network. Eqn. 3 has 3M+1 dofs and is
evaluated in 7M flops. The ratio R therefore approaches
2.33 for large values of M. Eqn. 4 is evaluated in 9M
flops and contains 4M+1 dofs. Here, the ratio R
approaches 2.25 for large M.

DETERMINATION OF THE COEFFICIENTS

The coefficients of the polynomials are determined by
solving an overdetermined system of equations using
the least squares method, without constraints. The
neural network is optimized by an unconstrained
minimization of the sum-of-squares error
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with respect to the network weights, as in Vande Sande
et al (2). Here, D is the number of measurements,

neur
dy the network output for measurement d and
meas
dy the measured value. Several  tests are performed

and the best one is retained (1).

COMPARISON

For both models and both properties, figures 2a & b
show the number of flops per dof, figures 3a & b the
remaining sum-of-squares error and figures 4a & b a
measure for the curvature C of the solution (1):
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with I the number of inputs and, y the model’s output
and xi the ith  input.

Figure 2 reveals that neural networks require more flops
for the same number of dofs, especially for the single
input problem. Moreover, M  of those flops are time
consuming exponential function evaluations and the
computer code for the evaluation of a perceptron is
much longer than the code for a polynomial. On the
other hand, the accuracy and the curvature of the neural

network models tend to be better than for polynomial
models for the same number of dofs, as demonstrated by
figures 3 & 4. The increase of the curvature towards a
higher number of dofs is also more significant for
polynomials.

CONCLUSIONS

A comparison between polynomial and neural network
models for two important magnetic properties is
presented. From a computational point of view,
polynomials are easier to evaluate than neural networks
are. Hence, for the same amount of computation time,
polynomials can have slightly more dofs. This results in
a lower sum-of-squares error for the polynomial, which
may then be comparable with the neural network’s
error, depending on the specific case. If the curvature is
not affected too much, the polynomial approximation
should not be rejected a priori, particularly when the
material model has to be evaluated frequently, e.g. in
every element of a finite element mesh. Conversely, if
the curvature of the solution should be kept low for
numerical reasons, e.g. to ensure or to improve the
convergence of an algorithm, as in (2) and Pahner et
al. (3), the neural network model might be favorably
used.
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Figure 3: The sum-of-squares error for
(a) the single input problem;
(b) the double input problem.
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Figure 4: The curvature of the solution for
(a) the single input problem;
(b) the double input problem.


