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Abstract: Coupled electromagnetic-thermal field problems using nonidentical finite-element
meshes for the magnetic and thermal discretisation, as encountered for instance in the simulation
of electromagnetic energy transducers such as motors and transformers, require the application of
_ nonlinear iterative solution algorithms. The paper gives an overview of the commonly used weakly
coupled block iterative Picard methods and relaxation techniques. Strongly coupled Newton
methods, both with explicit and implicit Jacobian matrix computations are discussed. Local as well
as global convergence issues are treated. In this respect, the use of an alternative continuation
technique, the pseudotransient coupled algorithm, using transient calculations in the frequency
domain by means of an envelope approach, is discussed. The performance of the algorithms is
compared using representative benchmark problems with both moderate and strong interaction.
This leads to indications and a choice table on how to select appropriate algorithms for these

coupled problems.

1 Introduction

Electrical energy transducers, such as transformers and
electromagnetic actuators, exhibit different behaviour when
their internal temperature distribution changes, mainly due
to temperature-dependent electromagnetic material char-
acteristics. For-instance, permanent magnets change their
operating characteristics and the conductivity of the wind-
ing/bar material drops at elevated temperature [1]. The
thermal sources involved are dominated by conductive and
iron losses. Similar effects take place in electroheat
applications, for instance induction heating devices. This
electromagnetic-thermal field interaction needs to be
modelled using a coupled problem approach [2, 3]. Here,
mainly low-frequency applications are considered, but
similar problems exist for high-frequency devices [4].

Mathematically, coupled electromagnetic—thermal pro-
blems are mutually nonlinearly-dependent physical field
problems. Many algorithms can theoretically solve these
types of nonlinear equation systems [5]. Here, they are
discussed using a generally coupled electromagnetic—
thermal field problem, indicated as

G4(A, T') =0
{GT<A'., T) =0 (M

with' G4 the field equation describing the magnetic field in
terms of the vector potential A. The second dependent
variable T' is required to include the temperature depen-
dence of some terms in the equations. Gz represents the
thermal field equation in terms of the temperature T. Here,
the second dependent variable A’ is needed to include the
electromagnetic loss densities. The accent used in the
mutually interacting variables indicates that a projection
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operation is required to transfer the solution between the
different solution domains of the associated subproblems.
(1) can represent a steady-state as well as a transient
problem. As (1) is a set of nonlinear equations, a unique
solution is not guaranteed. Therefore it is possible that more
than one mathematical solution exists, especially in the case
of uncontrolled extrapolation of the material characteristics
as this does not always yield physically consistent situations.

2 Coupled field equations

Usually the finite-element method (FEM) is used to
numerically compute such interacting fields. It is often
required to employ different meshes as all regions do not
have the same physical properties. For example, the air
surrounding an electrical motor, carrying part of the
leakage field, is meshed for the magnetic field whereas it
can be replaced by a convection boundary condition for the
thermal problem definition. The projection producing the
discretised A’ and T’ field, starting from the differently
discretised A and T field is an explicit interpolation or a
best-fit calculation, the latter yielding a problem to solve on
its own as it represents a least-squares fit of the solution
written in terms of the other mesh’s basis functions, to the
known solution.

A generally coupled electromagnetic-thermal coupled
problem in 2D is described by

V- 0 V(A)) ~ () o = (T

o~ o

2)

V(1) - pe 0T = g (T, &) 3)
The first equation gives the magnetic field for a device with
length L, supplied by voltage source V; with reluctivity v,,
thermal conductivity A, mass density p and specific heat c,
containing a temperature dependent electrical conductivity
o. The heat sources are limited to the Joule losses. Further
interactions may be due to iron losses, temperature-
dependent magnetic characteristics or other dependencies.
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These have been left out for simplicity, but their treatment is
similar.

In an oscillating steady-state situation, e.g. under AC
supply conditions, a frequency-domain method may be
more appropriate for the magnetic field solution, describing
the field by means of phasors A and V:

V- (0 VA) ~ noo(T)jwd = o ()5 (@)

V- (AVT) = —gs(T, A') )
(4) is obtained from (2) using
Ay =A- & (6)

The transient simulation (2) and (3) shows a major
difficulty: the numerical stiffness due to the large ratio
of the typical electromagnetic (very small) and thermal
time constants (very large) involved. In such cases, a
simulation with large time steps is still desired, but far from
obvious.

An often-made approximation consists of the combina-
tion of the steady-state (4), approximating the s
lowly changing overall magnetic field pattern by
omitting the second derivative in (7), and the transient
thermal (3).

dA (. . OA\ L

However, this approximation implicitly holds an extra-
polation of, for instance, the losses, yielding divergence for
particular technical models. This is explained by the error in
the heat sources, calculated as if the system were at steady
state, that are systematically wrong, yielding overrated
losses in most practical cases. In such a case, it is better to
include the entire expression of (7) and assume that the
phasor A evolves in time at the rate of the slower thermal
time constants. This yields a transient frequency-domain
method or envelope calculation method [6], allowing a
more stable simulation of the magnetic field changes at large
time-steps

==

0A
V- (5,YA) - pyo(T) (jwé +2) ——uom 2 @
The interpretation of this approach is clarified in Fig. 1. The
slowly changing envelope evolves with far less dynamics
than the underlying oscillating function. This approach has
also been suggested to solve circuit problems with largely

different frequencies involved, for instance in mixer circuits
[7-10].

Fig. 1  Graphical interpretation of the solution envelope
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3  Overview of coupled-field solution methodolo-
gies

The solution algorithms to solve the general nonlinear
coupled problem (1) are iterative and can be distinguished
in two categories [5].

3.1 Picard algorithms
The Picard algorithms or weakly-coupled successive sub-
stitution methods consist of iterating over a sequence
(cascade) of more or less standard subproblem solutions.
The intermediate operations contain loss-calculation -algo-
rithms and the calculation of the thermal influence on the
relevant local material characteristic, featuring as a
dependent coefficient. Possibly different subproblem meshes
are combined, using separate projection operations in
between calculations.

When the partial solutions are immediately re-used, a
sequential block Gauss—Seidel algorithm is obtained

A — |, ( A® T/(k))

T — H, ('A/(k+1)7 T(k}) )

Otherwise, a block Jacobi algorithm that can be parallelised
is applicable. In these algorithms only function evaluations
and field solutions, represented by H, and Hy, have to be
calculated. Therefore these types of methods are commonly

" used [3], as it allows the re-use of individual field solvers

within a computation shell.

3.2 Newton algorithms

Theoretically, Newton algorithms are a more interesting
choice to solve nonlinear problems as they promise a
quadratic convergence when close to the exact solution.
Therefore it is interesting to consider whether it is possible
and worth implementing.

3.2.1 Newton-Raphson algorithm: In the Newton—
Raphson method a set of corrections 64 and o1, to be
added to an approximation or estimate of the entire
nonlinear solution, 1s calculated [2, 3, 11]. The Jacobian
matrix, containing all first-order derivatives and system
residuals, evaluated in the estimated solution, is present in
the large jacobian ‘correction’ equation containing all field
variables at the same time (here, the arguments of the
nonlinear residuals in (1) are omitted to simplify the
notation)

0G4 0G, 90T

o4 : 8T’ﬁ i 04 _ _ G4 (10)
oGy 04’ OGr or Gr

04" a4 oT

However, in the case of a frequency-domain method with
complex variables, G4 should be in an analytic form to
calculate the jacobian elements as such [12]. The necessary
conditions are

ORe{d}  OIlm{4} ’ dIm{A}  ORe{4}

(11)

These are not fulfilled, as for instance indicated in [12], and
as a consequence the derivatives cannot be determined
directly. Then, the system has to be split into a real and
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imaginaty component, complicating and enlarging the
system

E)Re{GA} 8R€{GA} 8R€{GA} QZ:
ORe{A} Alm{4} oraT
AMm{G,} OIm{G,} oIm{G,} T’
ORe{d} Alm{A} or" " or
8Gr  ORe{d'}  8Gr Olm{4’} Gy
ORe{d’} ORe{d} Olm{a'} Hlm{d} = T
RC{&A} Re{GA}
x | Im{o4} | =~ [ Im{G4} (12)
’ or Gr

The extra derivative factors in the off-diagonal blocks of
(10) and (12) are due to the projection expressions. This and
the many dependabilities yield an increased fill-in of the
sparse jacobian. In many cases the explicit determination of
the partial derivatives is a major problem as, for instance,
the Tosses are computed through a complicated procedure
and the material data are represented by look-up tables.

The advantage of this Newton-Raphson method is that
it will converge very quickly in the vicinity of the exact
solution. However, the block-structured jacobians in (9) and
(11) are asymmetrical and realistic problems which often
exhibit a high condition number [11], owing to the different
nature of the underlying parameters. Therefore expensive
iterative linear system solvers such as GMRES [13] (in
practice used in the restarted version) are required. Another
disadvantage is the fact that (12) becomes an extremely
large equation to solve, where the main difficulty is the
construction of a suitable preconditioning method.

3.2.2 Quasi-Newton algorithms: The computa-
tional cost of a Newton—Raphson method is obviously
twofold. First, it is determined by the effort required for the
construction of the jacobian and, next, the solution of the
correction equation system. To avoid this burden, many
approximations or -quasi-Newton methods have been
proposed that often try to approximate the jacobian matrix,
e.g. by keeping it fixed for a few iterations {14]. An
interesting alternative in this respect is to approximate the
product of the jacobian J and a vector v, with a small norm
[14, 15]. This type of matrix—vector product is found in
transpose-free iterative linear system solvers such as
GMRES (generalised minimal residual method) or QMR-
based methods [13]. The approximation consists of the use
of the difference of the operating point (partial) residual and
a perturbed (partial) residual

J(Xj)-vz(;'(ijrKv) G'(xj) (13)

K

In practice, only the perturbed residual part has to be
calculated, requiring the solution of the considered field
problem, though with a good starting solution, particularly
in the previous approximation. The other term is in fact the
operating-point residual, initially computed for the right-
hand side of the jacobian equation system. Hence, a so-
<called jacobian matrix-free algorithm or ‘implicit jacobian’
method is obtained. Obviously, the accuracy of the
approximation depends on the choice of k. It influences
the approximation as well as the round-off errors. A good
choice [14, 15] is

K:251/2max("xj|, magn(xj))Hvlrl/z (14)
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However, to use the difference approximation (13) along
with the jacobian in (10), several evaluations of a residual
part (in practice an individual field solution), at least one for
every subproblem block, are required. An advantage is that
they can be executed in parallel. In this way the first
computational problem of the Newton approach, the
construction of the jacobian, is avoided, but the GMRES
algorithm will still result in high memory consumption.
Therefore it is often more interesting to rewrite the
equations explicitly in terms of a smaller set of variables,
the ‘coupling variables’ [11]. Here, the set of electrical
conductivities and loss quantities connected to the finite-
element mesh is appropriate

q— Gy(o) =0
{G*Gg(q)=0 (13)
Then, the jacobian equation becomes
L 6o
do | |9 | _ |4 —Gylo"
_96, LsJ B [U“GU(Q*)J (16)
dq

Using the difference approximation (13), the jacobian—
vector product in the GMRES procedure reduces to (16).
The calculation of the perturbed partial residuals can be
performed in parallel. The operation-point solution is a

~ good starting point of this calculation

9G,
l - .
Jo . Vq
{ _9Gs 1 [VG]
0q
v+ G,(6") — G,(6" + K4¥,)
>~ G,,(q*)—Gi”(q*-i-K v ) (17)
Vo + e
Kq

This variable reduction could have been applied also to the
traditional Newton approach, but in that case the
difficulties encountered while deriving the jacobian elements
would have increased dramatically owing to the complex
interdependencies in this-equation system. The result would
be a very dense jacobian.

4 Global convergence issues

The Picard or Newton methods possess good local
convergence properties in the vicinity of the exact solution.
Therefore a good starting solution is a prerequisite. If a
good estimate is not (yet) available, for example at the
beginning of the computation, additional measures have to
be taken to ensure the global convergence. Two interesting
techniques can be used.

4.1 Adaptive relaxation

A relaxation technique damps the corrections calculated in
an iterative step. To obtain a reasonable convergence rate,
these parameters can be adapted in every iteration step by
estimating nearly optimal damping coefficients by trying to
obtain a maximum minimisation of the residual norm(s)
[12, 14, 16].

4.2 Stabilisation: pseudotransient continuation
In some cases with a very strong mutual interaction, the
relaxation is not sufficient. In this case a more eclaborate
technique, a stabilising pseudotransient continuation is
required [17]. The steps of this approach consist of the
solution of a transient problem converging smoothly to a
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steady state, which is the desired coupled problem solution.
Now, the rate of convergence is determined by the
underlying thermal large time constant, which can be
controlled.

Hence, the transient equation pair (3) and (7) is solved
instead of the steady-state (4) and (5). The (pseudo-)time
variable acts as continuation parameter. A more or less
smooth converging evolution towards the nonlinear steady-
state solution is pursued, by advancing the problem
parameter . This pseudo-time parameter can be interpreted
as letting the solution slowly evolve towards the desired
nonlinear solution point on a pseudo-timescale. Close to the
steady state, where the time steps are large, the influence of
the added time derivatives vanishes and the method
converges towards the time-harmonic approach, the
quasistationary solution.

A full transient approach, not using this envelope
approach, is an alternative stabilisation technique. How-
ever, it is expensive to use because of the very short time-
steps and it is more appropriate for irregular current
excitations.

5 Algorithm comparison

5.1 Test problem

To compare the different nonlinear computational ap-
proaches the coupled FEM solution of a lean solid busbar
operated at a voltage of 50Hz is computed (Fig. 2). This
test problem is representative for deep bars in an induction
machine or an induction heating problem [18]. The electrical
conductivity is temperature dependent. Here, the only losses
in the model are Joule losses, caused by the source and the
eddy currents in the conductor. The device is cooled by
convection- at all side faces. One edge is supposed to be
cooled with a lower convection coefficient, introducing a
moderately asymmetrical cooling, which can be an
approximation to model rising cooling air due to natural
convection.

The nonlinear coupled problem has (at least) two
solutions. The first, physical, solution (Fig. 3) results in a
moderate increase of the bar temperature, with the highest
temperature at locations with the largest current density.
The other solution is usually not feasible (Fig. 4). This can
be a result of an unconstrained extrapolation of the material
characteristics beyond the material’s phase transformations.
In this solution the current is concentrated on one side of
the conductor where’ as a consequence, a much higher
temperature is encountered. .

Whether the solution converges to the physical or
nonphysical field depends on the algorithm, its parameters
and the starting conditions. Convergence towards the

Fig. 2 Coupled problem test model
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Fig. 3 Magnetic and thermal field solution of coupled test problem
(“correct physical solution’)

a. Magnetic field around bar.

b. Thermal field inside bar.
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Imaginary part
Equipotental plot

a b
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Fig. 4 Magnetic and thermal field solution of coupled test problem
(‘incorrect physical solution’: curvent has moved to one side and
temperature distribution is extremely asymmetric)

a. Magnetic field around bar.

b. Thermat field inside bar.
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Fig.5 Comparison of convergence behaviour of model with low
size ratio; all converge to ‘physical solution’

—O- Block Gauss-Seidel

-~ Block Gauss-Seidel (relaxed)

-/~ Block Jacobi

—x— Block Jacobi (relaxed)

—M- Time-Harmonic/Transient

—O- Transient Time-Harmonic/Transient

- Newton

nonphysical solution is more likely for conductors with a
higher size ratio; Fig. 5 shows the smooth convergence
behaviour of the oo-norm for a low-size ratio model
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Fig. 6 Comparison of convergence behaviour of model with high
size ratio; all but pseudotransient algorithm converge to ‘nonphysical
solution’

—O— Block Gauss-Seidel

-0~ Block Gauss-Seidel (relaxed)

/- Block Jacobi

—x— Block Jacobi (relaxed)

—l- Time-Harmonic/Transient

~O- Transient Time-Harmonic/Transient

(neither relaxation nor stabilisation were necessary). This
has to be compared with the irregular trends in Fig. 6 for a
high size-ratio model, where many algorithms did not
converge to the correct solution despite strong adaptive
relaxation. For the high size-ratio model, the only algorithm
converging to the physical solution was the pseudotransient
algorithm based on the transient time-harmonic method (7).
The Newton algorithm used for that computation was the
described method with approximating jacobian—vector
product in GMRES, that proved to be competitive when
a good starting solution is available.

6 Discussion and algorithm choice

Though the previous discussion is built around a simplified
magnetic-thermal coupled problem, the results can be used
to predict the existence of convergence problems in coupled
problems in a general way. As illustrated in [18], large
practical problems such as foil-winding transformers show a
simitar convergence behaviour for the coupled-problem
calculation methods outlined.

The reason why many algorithms diverge from a certain
point in the test problem can be understood as follows. In
this model significant current concentrations exist yielding
loss concentrations. Therefore the temperature would
increase at these locations as well, especially when cooling
is not ideal. Due to these hot spots, the local material
parameters change dramatically, linked with a totally
different eddy current distribution, related losses and hot
spots ... Mathematically, this causes intense oscillations
and as a consequence the algorithms drift away from the
correct solution.

Some important trends can be recognised in this .simple
model that can help to identify potentially difficult coupled
electromagnetic-thermal problems:

e The presence of nonuniform cooling mechanisms: yielding
asymmetrical heat transport paths as caused by local heat
transport conditions or the shape of the conductor (e.g. high
aspect ratios). The result is usually a significant temperature
difference that can be destabilising.

e The presence of nonuniform heat sources involving
temperature-dependent loss mechanisms: for instance, very
concentrated skin effects yielding high locally losses. Others
are concentrated iron loss, caused by fluxes that are
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Table 1: Algorithm choice table for coupled electromag-
netic-thermal problems

Gauss-Seidel

Steady-state
time-harmonic/
transient

(Pseudo-)
transient
time-harmonic/
transient

Full Newton

Quasi-Newton
(approximate
jacobian-vector
product)

low risk

Not advisable,
except when
transient time
harmonic method
is not available

Methods with high
risk or any
transient problem

Problems that can be
described by
available simple
differentiable
functions

Problems requiring
use of black-box
solvers & for

which good starting
solutions exist

Method Advisable for Remarks
Block Problems with Parallelism capability
Jacobi moderate risk

~ Block Problems with No parallelisation .

bénefit

Very robust

Nontrivial partial deri-
vative calculation for
jacobian causes high
computational  costs;
ill-conditioned system
Very flexible, but the
number of unknowns
must be kept to mini-
mum (GMRES mem-
ory consumption)

indirectly influenced by temperature fluctuations. The
‘harder’ the nonlinear thermal dependence, the more severe
the problems become.

o Frequency dependence of the loss mechanism, linked to the

-changing skin depth.

The presence of at least one of the discussed observations
in a problem definition indicates that it should be handled
with particular attention to the instabilities. It is advisable to
try an initial solution with a ‘safe’ robust method and a fast
‘dangerous’ method to-check whether a risk for nonphysical
solutions or divergence exists. Table 1 may help in the
selection of an appropriate effective and efficient algorithm.

7 Conclusion

Different nonlinear iterative-solution algorithms for coupled
electromagnetic—thermal problems have been discussed and
local as well as global convergence issues treated. The
different approaches were compared using a test problem.
This allows one to conclude that more robust algorithms
such as pseudotransient continuation methods are required
when significant skin effects in irregularly shaped con-
ductors, possibly asymmetrically cooled, are present. Fast-
converging Newton-type methods are often too expensive
when compared with Picard methods, ‘'unless the quasi-
Newton method approximating jacobian-vector products in
iterative solvers can be used, for instance in the vicinity of
the solution.
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