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Abstract  For rotating electric machines, the reluctance 
forces (Maxwell stresses) acting on the stator teeth are a 
major cause of noise emission. Next to the reluctance forces, 
magnetostriction is a potential cause of additional noise from 
electric machines. First, a thermal stress analogy is used to 
introduce magnetostriction in the finite element framework. 
Next, we present the computation and comparison of the 
stator vibration spectra caused by these two effects separately, 
by example of a 45 kW induction machine. Moreover, two 
kinds of magnetostriction characteristics of the stator yoke 
material are compared: a quadratic λλλλ(B) curve and a λλλλ(B) 
curve with zero-crossing around 1.5 Tesla. 

 
Index terms  Coupled Magnetomechanical Problems, 

Finite Element Methods, Magnetostriction. 

I. INTRODUCTION 

oise and vibration research has been focussing on 
reluctance forces (Maxwell stresses) as the major cause 

of noise and vibrations in rotating electric machinery. For 
non-rotating machinery (transformers, inductors), magneto-
striction is the major cause of noise, but also for induction 
machines, magnetostriction can be responsible for a 
considerable part of the machine’s noise [1-2]. The 
simulation of vibration spectra induced by reluctance forces 
has been investigated extensively using finite element 
models, e.g. [3-4], while the simulation of magnetostriction 
effects has been left aside. This is partly due to the fact that 
accurate magnetostriction data are hard to obtain. The 
magnetostriction of the yoke material also depends on its 
stress condition, but it is hard to estimate the stress 
remaining in the material after a shrink-fit of the yoke into 
the stator housing. Moreover, it is often difficult to embed 
this kind of material behaviour in (existing) finite element 
software, although this may be resolved with the advent of 
powerful methods like Preisach material modelling, which 
can be enhanced to encompass magnetostriction [5]. A 
straight-forward finite element method to capture the 
magnetostrictive deformation that is based upon a thermal 

stress analogy, has been presented earlier [6]. The 
theoretical background is repeated here briefly and is 
subsequently used to estimate, for a 45 kW induction 
machine:  
1. the relative importance of reluctance forces and 

magnetostriction with respect to stator deformation, 
2. the impact of using materials with different magneto-

strictive behaviour. 
The isotropic magnetostriction curve 

2610 B−=λ , (1) 

will be referred to as magnetostriction type 1 and the 
isotropic curve with zero-crossing around 1.5 Tesla 

)4.0(10 426 BB −=λ − , (2) 

will be referred to as magnetostriction type 2. Both kinds of 
magnetostriction occur commonly in electric steels. We 
confine ourselves to 2D models, but the concepts 
introduced here are easily extended to 3D finite element 
models. 

II. THERMAL STRESS ANALOGY 

 For plane stress (σz=0), the elastic strain in x-direction 
εel,x  is determined by the external stresses σx and σy:  

( )yxxel E
νσ−σ=ε 1

, , (3) 

where E and ν are the Young and Poisson modulus 
respectively. When a material with thermal expansion 
coefficient αT is heated, it will exhibit a thermal strain 
αT∆T which is added to the elastic strain εel,x in order to 
give the total strain εx =εel,x +αT∆T. The elasticity equation 
(3) is now written as [7] 

( )yxTx E
T νσ−σ=∆α−ε 1 . (4) 

The same procedure is valid for magnetostrictive strain 
λ(B) instead of thermal strain, giving 

( )yxx E
B νσ−σ=λ−ε 1)( . (5) 

Similarly, the elastic energy U of a mechanical finite 
element system is determined by the elastic displacement 
ael and the mechanical stiffness matrix K: 

elel aKaU T

2
1= , (6) 
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where again the elastic displacement ael is not necessarily 
equal to the total displacement a, since the material may 
exhibit thermal or magnetostrictive expansion. The elastic 
energy U expressed in terms of total displacement a and 
magnetostrictive displacement αms is 

( ) ( )msms aKaU α−α−= T

2
1 . (7) 

The next section describes how the magnetostrictive 
displacement αms is found, and how this leads to the 
concept of magnetostriction forces, the latter being the 
direct equivalent of thermal stresses. 

III. MAGNETOSTRICTION FORCES 

For finite element models, the magnetostrictive 
displacement αms can be computed on an element by 
element basis. The midpoint (center of gravity) of the finite 
element is held fixed. The magnetostrictive strain of the 
element is found using the element’s flux density Be and 
the λ(B) characteristic of the material. If a set of λ(B,σ) 
characteristics are given, one is chosen for the appropriate 
value of tensile stress. 
 
A. Isotropic magnetostriction 

For materials with isotropic magnetostriction (Fig.2), the 
local xy-axis of the element are rotated in such a way that 
the flux density vector B coincides with the local x-axis. 
The strains λx and λy in the local frame are then given by 
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where λ=λ(B) is the magnetostrictive strain in the direction 
of B (x-direction) and λt is the magnetostrictive strain in the 
transverse y and z-directions. Usually, magnetostriction will 
leave the total volume and density unchanged [8], so that 
λy = λz = –λx/2. This volume invariance is equivalent to a 
magnetostrictive 'Poisson modulus' of 0.5, which is bigger 
than the mechanical Poisson modulus of about 0.3. 
Therefore, when the magnetostrictive deformation is 
represented by a set of mechanical forces in the direction of 
the vector B, there is always a set of forces perpendicular to 
B to correct this difference in Poisson modulus (Fig.1). The 
above is valid for plane stress. In a 2D plane strain 
analysis, the thickness (z-direction) of the material has to 
remain constant and an additional tensile z-stress needs to 
be applied in order to obtain λz = 0. This adjusts the values 
(8) to 
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where ν is the mechanical Poisson modulus of the material 
and λt = –λ/2. 
 
B. Anisotropic magnetostriction 

Fig.2 shows a typical magnetostriction characteristic for 
anisotropic M330-50A steel (dashed lines) for rolling 
direction and transverse direction. As an approximation of 
the anisotropic behaviour, the flux density vector is 
decomposed into a Bx and a By component in the element’s 
local xy-axis, arranged so that the x-axis coincides with the 
rolling direction, and the y-axis with the transverse 
direction. The rolling direction curve λRD(B) is then used 
with Bx as input, and the perpendicular direction curve 
λPD(B) with By as input, giving, for plane stress, 
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Depending on the actual anisotropic behavior of the 
material, a more accurate strain description can be used, 
e.g. taking magnetostrictive shear λxy into account [9]. A 
similar correction as in (9) can be made for the plane strain 
case. 
 
C. Magnetostrictive displacement αms 

Still working in the local xy-axis, the strains λx , λy are now 
converted into nodal displacements αe

ms = (αe
x,i , αe

y,i) 
considering the midpoint of the element (xm , ym) as fixed: 
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, , i=1,2,3 (11) 

where i indicates the element nodes with co-ordinates 
(xi , yi). 
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Fig.1. The magnetostriction forces distribution (right) representing the
strain caused by magnetostriction due to the magnetic field B (left),
consists of a set of forces parallel to B and a set of forces perpendicular
to B. 

 
Fig.2. Magnetostrictive material characteristics for isotropic non-oriented
3% SiFe (solid lines, as a function of tensile stress) and anisotropic
M330-50A (dashed lines,for rolling and transverse direction). 
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D. Magnetostriction forces Fms 

The mechanical stiffness matrix Ke for one element gives, 
after multiplication with the magnetostrictive displacement 
αe

ms of the nodes, the nodal magnetostriction forces 
e
ms

ee
ms KF α=  . (12) 

Equation (12) has to be performed element by element 
(using Ke) and not for the whole mesh at once (using the 
global matrix K). This is because the N different 
displacements αms,j , j = 1...N, due to magnetostriction in 
the N elements surrounding one specific node, should not 
be summed. These N displacements αms,j should first be 
converted into magnetostriction forces, and then the N 
forces are summed to give the total force on this node. 
 When the magnetostriction forces for all elements have 
been computed, they are summed to give the total 
magnetistriction force distribution Fms: 

∑=
e

e
msms FF  . (13) 

Fig.1 (right) shows the resulting Fms for a square block of 
material subject to a homogeneous field; all internal node 
forces cancel. Once this distribution is known, the 
corresponding global deformation ams of the entire structure 
due to magnetostriction, is found using the global 
mechanical stiffness matrix K: 

msms FKa =  . (14) 

Note that (13) should only be used to find Fe
ms from αe

ms, 
while (14) should only be used to find ams from Fms. Since 
the global stiffness matrix K was used to find ams , the 
influence of external boundary conditions has been taken 
into account, as well as the effect of the shape of the body 
(e.g. ring-shaped stator). 

IV. MAGNETOMECHANICAL SYSTEM 

 The total energy E of the magnetomechanical system is 
the sum of the elastic energy U and the magnetic energy W: 

AMAaKaWUE elel
TT

2
1

2
1 +=+= , (15) 

where M is the magnetic stiffness matrix and A is the z-
component of magnetic vector potential. The mechanical 
equation of the magnetomechanical system is found by 
considering the virtual work done by a set of external 
forces R (where vector potential A remains constant): 

R
a
W

a
U

a
E =

∂
∂+

∂
∂=

∂
∂ . (16) 

The magnetic forces (reluctance forces as well as Lorentz 
forces [6]) are found by the virtual work term [10] 

∫ ∂
∂−=

∂
∂−=

A

mag dA
a
MA

a
WF

0

T , (17) 

which is valid for linear and non-linear magnetic systems. 
The elastic forces as well as the magnetostriction forces are 
given by the other virtual work term ∂U/∂a. First, we write 
the elastic energy as the sum of all element contributions: 

( ) e
el

ee
el

e

aKaU
T

2
1∑= , (18) 

then, using ae
el =  ae–αe

ms, the partial derivative ∂U/∂a 
becomes 

( ) e
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, (19) 

       ( )e
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       msFKa −= , (21) 

since ∂ael / ∂a = 1 for constant A. When the feedback of 
magnetostriction on the magnetic field is neglected, the 
magnetic equation of the magnetomechanical system is just 
MA=T, where T is the source term vector. The 
magnetomechanical system then becomes 
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msmag FFR
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a
A

K
M
0

0  , (22) 

where the second equation is obtained by substituting (17) 
and (21) into (16). The system (22) can be solved in a 
numerically weak coupled scheme, first solving the 
magnetic problem and then solving for the mechanical 
displacement. 

V. MODAL DECOMPOSITION 

The vibration of the stator is governed by 

)(tfKaamCamM =++ &&& , (23) 

where a(t) is the nodal displacement vector and f(t) is the 
force distribution acting on the stator for a specific rotor 
position α, f(t)= f α. Mm, Cm and K are the mechanical mass, 
damping and stiffness matrices. Neglecting damping 
(Cm=0) and using the modal decomposition a=Pq with P 
the modal matrix containing a selected set of N=30 stator 
mode shapes, and q the vector of generalised modal co-
ordinates, (23) is transformed into [11] 

)(2 tqq iiii Γ=ω+&& , i = 1..N, (24) 

where ωi is the mode's eigenfrequency. The modes are 
calculated taking mass and stiffness of both the yoke iron 
and the stator coil copper into account. For a given force 
pattern f α (in this case Fmag or Fms) occurring for rotor 
position α, and a given mode shape φi , the mode 
participation factor (MPF) Γi

α is  

im
T

i

T
i

i
M

f
φφ

φ=Γ
α

α . (25) 

For a slip s, the period of the MPF can be approximated by 
90º/(1–s)=88.66º or a multiple of this [4]. Here, the period 
of the MPF is approximated by 360º/(1–s)=354.6º and the 
MPF are sampled using 180 rotor positions at 2° intervals. 
From (25), the MPF are known as a function of rotor 
position, and the rotor speed n allows us to find the MPF as 
a function of time. The individual modal equations are 



 

 

solved in the frequency domain by applying a discrete 
Fourier transformation to (24): 

( )22
)(

)(
ω∆−ω

ω∆Γ
=ω∆

k

k
kQ

i

i
i . (26) 

The spectrum Qi of all mode shapes of interest can be 
found in this way. The separate complex spectra Qi of the N 
relevant modes are composed back into the actual stator 
displacement and acceleration spectra using the modal 
composition a=Pq. 

VI. EXAMPLE:  45 KW  INDUCTION MACHINE 

Fig.3 compares the stator acceleration spectra computed 
for reluctance forces as well as for the two types of 
magnetostriction (1) and (2), for the case of a 45 kW 
induction machine under normal operation. Fig.3a 
compares the stator acceleration spectra induced by 
reluctance forces (dotted line) and magnetostriction type 2 
(solid line), while Fig.3b compares the vibration spectrum 
induced by magnetostriction type 1 (dotted line) and 
magnetostriction type 2 (solid line). It can be seen that the 
vibrations (and thus also the noise) due to magnetostriction 
are considerably smaller than the effect due to reluctance 

forces, except for the 100 Hz force component, where they 
are of the same order of magnitude. The overall difference 
between magnetostriction type I and II is small, and is only 
important for a few specific modes. The full analysis 
required 15 hours of CPU time on a HP-B1000 
workstation. 

VII. CONCLUSION 

Using a thermal stress analogy, a set of magnetostriction 
forces is computed that induces the same strain in the 
material as magnetostriction does. Using the example of a 
45 kW induction machine, this magnetostriction force 
distribution is compared to the reluctance force distribution 
with respect to the resulting stator vibration spectrum for 
two typical magnetostriction characteristics.  
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Fig.3.    Stator acceleration spectra induced by 

a) reluctance forces (dotted line) and magnetostriction type 2
(solid line), 

b) magnetostriction type 1 (dotted line) and magnetostriction
type 2 (solid line). 
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