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Abstract—Time-harmonic magnetic field formulations are often coupled few hundred) is much smaller than that of A, (up to one mil-
with lumped parameter models of the driving electrical system. The finite Iion).
element discretization of such formulations yields large linear systems with . . .
a sparse matrix bordered by dense coupling blocks. The presence of these 0IVing linear system (1) forms the computational bottleneck
blocks prevents the immediate application of fast multigrid solvers. We in finite element models for technically relevant problems. Our
present a modified multigrid cycle that takes the coupling blocks into ac- gimisto alleviatethis bottleneck by efficient iterativetechniques
count. The resulting algebraic multigrid solver is used as a preconditioner .
for the conjugate gradient method for complex symmetric systems. We give based on the mU|tlgr|d idea.
evidence of the efficiency of the new method in the calculation of an induc-

tion motor.
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I. INTRODUCTION

Hybrid field circuit coupled problemsfrequently arisein elec-
tromagnetic engineering applications. We consider two di-
mensional quasi stationary eddy current problems coupled with
a lumped parameter model for the exciting electrical circuit.
The partia differential equation governing the phasor of the
z-component of the magnetic vector potential A. is the scalar
Helmholtz equation with complex shift [1]. This magnetic field
equation is discretized by first order triangular nodal finite ele-
ments with characteristic mesh width h. Theresulting finite ele-
ment description is tied to a lumped parameter model for the
electrical circuit connections. In these electrical relations un-
known currentsand voltages are associated to solid and stranded
conductors respectively [2]. Given the magnetic sourceterm £,
and the electrical (mesh-width independent) sourceterms g, the
hybrid field-circuit coupled discretization yields the following
linear algebraic system for the unknown magnetic and electrical
unknowns x;, and yy,

a(5)=(%)
Yh g )
The matrix A, is complex symmetric and has the following
block structure

_ A, By
An = ( (BT C )
where the submatrices Ay, By, and C represent the finite ele-
ment discretization of the Helmholtz operator, the field-circuit

coupling terms and the electrical circuit respectively. The mat-
rix C is mesh width independent. The dimension of C (upto a
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Il. ALGEBRAIC MULTIGRID

Multigrid methods [3] are efficient iterative techniques for
solving discretized partial differential equations. They comple-
ment the action of a smoother on agiven fine grid with the com-
putation of a correction on a coarser grid. The implementation
of the required coarser grid discretizations is cumbersome in
realistic engineering applications. Algebraic multigrid (AMG)
solvers [4] cure this problem by providing algorithms for the
automatic construction of the coarser grid problem.

To describe algebraic multigrid formally, let h and H de-
note the fine and coarse grid mesh sizes and A, x;, = by
the given fine grid discretization of a partial differential equa
tion. Algebraic multigrid partitions the grid nodes into sets of
coarse and fine grid nodes and a prolongation operator I ¥, map-
ping from coarse to fine grid space. The coarse grid operator is
built by using the Galerkin formula A i = 1Y A}, 1%, , where
IH = (I')T is the restriction operator. Once the coarse grid
problem has been set up, the solution to the fine grid problem
can be computed by multigrid cycling. As algebraic multigrid
codes require no information on the geometry of themodd, itis
easy to incorporate them into existing finite element simulation
packages.

Algebraic multigrid solverswere originally devel oped to treat
symmetric positive definite problems [5]. In [6] we extended
the applicability of AMG for solving two dimensiona quasi
stationary eddy current magnetic field problems. These prob-
lems yield linear systems with complex symmetric coefficient
matrices. To solve such problems by AMG, we base the selec-
tion of the coarser grid and the computation of the interpolation
operator on thereal part of the matrix. Thisinterpolationisreal,
and as a consequencethe coarse grid operator A ¥ is again com-
plex symmetric. Once the coarse grid problem is constructed,
multigrid cycling in complex arithmetic can be performed.

The straightforward application of AMG to the system (1)
involving the matrix .4 is hampered by the presence of the sub-
matrices B and C'. These submatrices destroy the structure of
the real part of the system matrix for which AMG is known to
perform satisfactorily. We present an AMG approach that builds
asequence of coarser discretizations based on thereal part of the



submatrix A and that takes the matrices B and C' into account
on the coarsest grid and in the cycling phase.

I11. ALGEBRAIC MULTIGRID FOR FIELD CIRCUIT
COUPLED PROBLEMS

Our multigrid technique for solving field-circuit coupled
problems is a generalization of the method for solving an el-
liptic problem augmented by an algebraic equation foundin [3],

Section 11.4.

We describe the two-grid scheme for solving the problem at
hand. Let the linear system (1)-(2) be a given fine grid discret-
ization of the coupled problem. In the setup phase the magnetic
field equations are coarsened without taking the electrical cir-
cuit connectionsinto account. We do not coarsen the electrical
circuit matrix. Given thereal part of the matrix A ;, asinput, the
AMG setup algorithm computes a coarse grid for the magnetic
unknowns and the corresponding interpolation operator I .. De-
noting by I the identity operator for the electric unknowns, we
define the interpol ation operator for the coupled problem Z % as

h
(T 7)) @

and the restriction operator Z}! asits transpose. The coarse grid
equivalent of (2) isthen given by

Apn
(Bu)"

). @

where Ay = I A Il and By = I}/' B, . In the cycling
phase smoothing is performed on the magnetic variables only.
Smoothing consists of, given a start solution (x9, y}) for the
linear system (1), computing a modified magnetic right-hand
sideterm f, = £, — B, y) and applying the smoother to the
system A, x, = f5,. The smoother leaves the electric variables
unchanged. The coarse grid correction is computed by solv-
ing the linear system with matrix (4) by a direct solver. If the
two-grid scheme is applied recursively to solve this coarse grid
system, amulti-grid scheme is obtained.

Themultigrid is applied as a preconditioner for the conjugate
gradient algorithm for complex symmetric systems[7].

For the implementation of the above algorithm we linked K.
Stiiben’s AMG code [4] with PETSc [8] and used PET Sc's mul-
tigrid components.

Ap =TH A TY = (

IV. A PRACTICAL EXAMPLE

To test the efficiency of our algorithm, a model of a 45kW
induction machineis taken as example. The final element mesh
was obtained after three adaptive refinement steps and containsa
total of 118802 elementsand 59574 nodes. The electrical circuit
is modeled by 148 equations. The performance of the multigrid
preconditioner was compared to an ILU preconditioner taken
from PETSc. Figure 1 shows an acceleration in the computation
of afactor between 5 and 6.

V. CONCLUSIONS

We presented an algebraic multigrid preconditioner for time
harmonic field circuit coupled problems. In the calculation of
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Fig. 1. Timingsof multigrid and ILU preconditioned conjugate gradient method
for complex symmetric systems.

an induction machine, the use of the multigrid preconditioner
resulted in an acceleration of afactor between 5 and 6 compared
to an ILU preconditioned conjugate gradient solver.
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