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Abstract—Time-harmonic magnetic field formulations are often coupled
with lumped parameter models of the driving electrical system. The finite
element discretization of such formulations yields large linear systems with
a sparse matrix bordered by dense coupling blocks. The presence of these
blocks prevents the immediate application of fast multigrid solvers. We
present a modified multigrid cycle that takes the coupling blocks into ac-
count. The resulting algebraic multigrid solver is used as a preconditioner
for the conjugate gradient method for complex symmetric systems. We give
evidence of the efficiency of the new method in the calculation of an induc-
tion motor.
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I. INTRODUCTION

Hybrid field circuit coupled problems frequently arise in elec-
tromagnetic engineering applications. We consider two di-
mensional quasi stationary eddy current problems coupled with
a lumped parameter model for the exciting electrical circuit.
The partial differential equation governing the phasor of the
z-component of the magnetic vector potential Âz is the scalar
Helmholtz equation with complex shift [1]. This magnetic field
equation is discretized by first order triangular nodal finite ele-
ments with characteristic mesh width h. The resulting finite ele-
ment description is tied to a lumped parameter model for the
electrical circuit connections. In these electrical relations un-
known currents and voltages are associated to solid and stranded
conductors respectively [2]. Given the magnetic source term fh
and the electrical (mesh-width independent) source terms g, the
hybrid field-circuit coupled discretization yields the following
linear algebraic system for the unknown magnetic and electrical
unknowns xh and yh

Ah

�
xh
yh

�
=

�
fh
g

�
: (1)

The matrix Ah is complex symmetric and has the following
block structure

Ah =

�
Ah Bh

(Bh)
T C

�
(2)

where the submatrices Ah, Bh and C represent the finite ele-
ment discretization of the Helmholtz operator, the field-circuit
coupling terms and the electrical circuit respectively. The mat-
rix C is mesh width independent. The dimension of C (up to a
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few hundred) is much smaller than that of Ah (up to one mil-
lion).

Solving linear system (1) forms the computational bottleneck
in finite element models for technically relevant problems. Our
aim is to alleviate this bottleneck by efficient iterative techniques
based on the multigrid idea.

II. ALGEBRAIC MULTIGRID

Multigrid methods [3] are efficient iterative techniques for
solving discretized partial differential equations. They comple-
ment the action of a smoother on a given fine grid with the com-
putation of a correction on a coarser grid. The implementation
of the required coarser grid discretizations is cumbersome in
realistic engineering applications. Algebraic multigrid (AMG)
solvers [4] cure this problem by providing algorithms for the
automatic construction of the coarser grid problem.

To describe algebraic multigrid formally, let h and H de-
note the fine and coarse grid mesh sizes and Ah xh = bh
the given fine grid discretization of a partial differential equa-
tion. Algebraic multigrid partitions the grid nodes into sets of
coarse and fine grid nodes and a prolongation operator I h

H
map-

ping from coarse to fine grid space. The coarse grid operator is
built by using the Galerkin formula AH = IH

h
Ah I

h

H
, where

IH
h

= (Ih
H
)T is the restriction operator. Once the coarse grid

problem has been set up, the solution to the fine grid problem
can be computed by multigrid cycling. As algebraic multigrid
codes require no information on the geometry of the model, it is
easy to incorporate them into existing finite element simulation
packages.

Algebraic multigrid solvers were originally developed to treat
symmetric positive definite problems [5]. In [6] we extended
the applicability of AMG for solving two dimensional quasi
stationary eddy current magnetic field problems. These prob-
lems yield linear systems with complex symmetric coefficient
matrices. To solve such problems by AMG, we base the selec-
tion of the coarser grid and the computation of the interpolation
operator on the real part of the matrix. This interpolation is real,
and as a consequence the coarse grid operatorAH is again com-
plex symmetric. Once the coarse grid problem is constructed,
multigrid cycling in complex arithmetic can be performed.

The straightforward application of AMG to the system (1)
involving the matrix A is hampered by the presence of the sub-
matrices B and C. These submatrices destroy the structure of
the real part of the system matrix for which AMG is known to
perform satisfactorily. We present an AMG approach that builds
a sequence of coarser discretizations based on the real part of the



submatrix A and that takes the matrices B and C into account
on the coarsest grid and in the cycling phase.

III. ALGEBRAIC MULTIGRID FOR FIELD CIRCUIT

COUPLED PROBLEMS

Our multigrid technique for solving field-circuit coupled
problems is a generalization of the method for solving an el-
liptic problem augmented by an algebraic equation found in [3],
Section 11.4.

We describe the two-grid scheme for solving the problem at
hand. Let the linear system (1)-(2) be a given fine grid discret-
ization of the coupled problem. In the setup phase the magnetic
field equations are coarsened without taking the electrical cir-
cuit connections into account. We do not coarsen the electrical
circuit matrix. Given the real part of the matrix Ah as input, the
AMG setup algorithm computes a coarse grid for the magnetic
unknowns and the corresponding interpolation operator I h

H
. De-

noting by I the identity operator for the electric unknowns, we
define the interpolation operator for the coupled problem I h

H
as

I
h

H
=

�
Ih
H

0
0 I

�
; (3)

and the restriction operator IH
h

as its transpose. The coarse grid
equivalent of (2) is then given by

AH = I
H

h
Ah I

h

H
=

�
AH BH

(BH)
T C

�
; (4)

where AH = IH
h
Ah I

h

H
and BH = IH

h
Bh . In the cycling

phase smoothing is performed on the magnetic variables only.
Smoothing consists of, given a start solution (x0

h
; y0

h
) for the

linear system (1), computing a modified magnetic right-hand
side term fh = fh � Bh y

0

h
and applying the smoother to the

system Ah xh = fh. The smoother leaves the electric variables
unchanged. The coarse grid correction is computed by solv-
ing the linear system with matrix (4) by a direct solver. If the
two-grid scheme is applied recursively to solve this coarse grid
system, a multi-grid scheme is obtained.

The multigrid is applied as a preconditioner for the conjugate
gradient algorithm for complex symmetric systems [7].

For the implementation of the above algorithm we linked K.
Stüben’s AMG code [4] with PETSc [8] and used PETSc’s mul-
tigrid components.

IV. A PRACTICAL EXAMPLE

To test the efficiency of our algorithm, a model of a 45kW
induction machine is taken as example. The final element mesh
was obtained after three adaptive refinement steps and contains a
total of 118802 elements and 59574 nodes. The electrical circuit
is modeled by 148 equations. The performance of the multigrid
preconditioner was compared to an ILU preconditioner taken
from PETSc. Figure 1 shows an acceleration in the computation
of a factor between 5 and 6.

V. CONCLUSIONS

We presented an algebraic multigrid preconditioner for time
harmonic field circuit coupled problems. In the calculation of
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Fig. 1. Timings of multigrid and ILU preconditioned conjugate gradient method
for complex symmetric systems.

an induction machine, the use of the multigrid preconditioner
resulted in an acceleration of a factor between 5 and 6 compared
to an ILU preconditioned conjugate gradient solver.
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