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Abstract— This paper presents the finite element modelling of the in-
duction heating of a moving ferromagnetic wire. Rather than focusing on
the numerical techniques that have been applied, which are rather clas-
sical, the paper presents an unusual modelling methodology for strongly
coupled and nonlinear problems that are hard, or even impossible to solve
by classical approaches. By doing pertinent simplifications, the analysis
is applied at an intermediary level, a well-chosen cell, that is representa-
tive of the phenomenology of the system but for which the finite element
method is well-behaved.
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I. INTRODUCTION

The finite element (FE) modelling of the induction heating
of a moving wire is quite a challenging task. All of the fol-
lowing features, which usually lead to serious difficulties in FE
modelling, i.e.
− strongly coupled phenomena (magnetic, thermal, exterior cir-
cuit),
− very different characteristic times,
− very different characteristic lengths (small skin depth in large
conductors),
− strong nonlinearities (magnetic phase change at Curie tem-
perature, thermal radiation, magnetic saturation),
− moving pieces,
affect induction heating applications. Efficient numerical tech-
niques already exist to overcome those difficulties individually
but the major hindrance, in this case, comes from the fact that
they are all concentrated in the same system.

In order to understand the complex behaviour of a strongly
coupled system, it is however essential to analyse it as a whole,
what seems at first sight to require the combination of several
submodels and several numerical techniques. Moreover, con-
sidering the impressive development in the recent years of com-
puter performances and algorithms, one might also feel free to
imagine that nothing is able to set any limit to the power of
representation of FE models and, consequently, that all the as-
pects of a system should be taken at once into consideration,
i.e. within one single model.

But it rapidly arises from experience that coupling is more
than just putting things together. Algorithmic and method-
ological innovations are also necessary. The direct combination
of the different aspects of a problem deteriorates dramatically
the numerical properties of the model and increases rapidly the
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amount of computer resources and time needed. This leads
generally to a terrible lack of efficiency, of accuracy and, above
all, of reliability. The difficulty when modelling a complex sys-
tem is not so much to write an appropriate set of equations but
rather to be able to solve it suitably at the end.

II. THE “CELL” METHODOLOGY

The discussion of the previous section seems to indicate that
the FE modelling of complete induction heating systems is
practically out of reach at present. We propose in this paper
a different approach based on the following observations:
− At R&D stage, engineers are still mostly busy with qualita-
tive concerns. Numerical models are at this stage less intended
to describe accurately an existing system than to estimate the
performances of one that is under development.
− Practically, designers must constantly work on basis of in-
complete, not yet fixed or inaccurate data sets.
− Conceivers think in term of systems with a very limited
amount of degrees of freedom.
− The quality of a numerical model is related to its ability to
answer technical questions.

The proposed idea is to analyse a simplified cell, extracted
from the system by applying well-thought-out simplifications.
The cell is defined in such a way that
− it behaves similarly to the complete system under a wide
range of sollicitations,
− it share as much degrees of freedom as possible with the com-
plete system,
− it allows to exploit the power of the FE method (flexibility,
wide applicability) and to avoid its drawbacks (i.e. by favour-
ing as much as possible sparse, symmetric and positive definite
matrix),
− it is small enough to give relevant numerical results with a
personal computer within a reasonable time.

Even if it is clear that the analysis of the cell can not stand
for a good representation of the complete system by itself, it is
the opinion of the authors that it already gives relevant pieces
of information concerning the interrelations between observ-
able quantities in the complete system. The numerical analysis
performed at the level of the cell contributes thereby to answer
part of the technical questions that arise at R&D stage. Ac-
cording to this approach, numerical models are not intended to
be exact copies of reality (though of a virtual nature) but rather
exploratory tools.

III. DESCRIPTION OF THE SYSTEM

The system under consideration is represented Fig. 1. The
inductor set is an assembly of coils partly connected in series
and partly connected in parallel. The coils are hollow water-
cooled conductors wound around the wire, forming regular he-



Fig. 1. Geometry of the induction furnace

lices with an axial pitch L. The inductor set is supplied with ac
currents via an inverter at a frequency of a few tens kilohertz.
The wire of radius r is made of iron and passes along the axis
through the coil with a velocity v.

The FE equations describing the magnetic system in terms
of the vector magnetic potential a, the magnetic permeability
ν(b, T ) and the scalar electric potential V are

(ν(b, T ) curl a, curl a′)
− (J(a, T ), a′) = 0 ∀a′ ;

(1)

with

J(a, T ) = −σ(T ) (jωa + gradV) . (2)

where σ(T ) is the electric conductivity. The equations describ-
ing the thermal system in terms of the temperature T , the mate-
rial derivative ḣ of the enthalpy h and the thermal conductivity
λ are

(

ḣ(T ), T ′

)

+ (λ(T ) gradT, gradT′)

+(q(t), T ′)Γ − (Q(T, a), T ′) = 0 ∀T ′

(3)

with the auxiliary quantities

h(T ) = ρc(T )T, (4)

Q(T, a) =
1

2
σ(T ) |jωa + gradV|2 , (5)

q(T ) = εc(T )(T − To) + εr(T )(T 4 − T 4
o ). (6)

where ρc(T ) is the specific heat. Equation (6) expresses the
heat flux, by fluid convection (with the surrounding air, param-
eter εc) and radiation (parameter εr), through the surface of the
wire Γ. To is the average temperature in the oven.

The interaction between the magnetic and thermal quantities
is mutual. Joule losses are the main heat source in the ther-
mal problem and all the material characteristics depend upon
temperature. In particular, the magnetic reluctivity of the wire
iron exhibits a strong dependency on both b and T , i.e. ν(b, T ).
As the temperature increases, the magnetisation M(h, T ) de-
creases following a square root rule [1]. This writes as

b(T ) = µ0

(

h +

√

1 −
T

Tc

M(h, 0)

)

. (7)

A correct representation of this phase change, is a major con-
cerns in induction heating. At T = Tc, the so-called Curie tem-
perature, the material has ceased to be magnetic and behaves
like air. It should be noted that handling this double depen-
dency, remains difficult in most commercial packages.

On the other hand, the magnetic phase change is accompa-
nied by the absorption by the material of a certain amount of
latent energy. This phenomenon is described by a strong de-
pendency with temperature of the specific heat ρc of the wire
material, as shown Fig. 2, where a sharp peak is observed when
approaching Tc.
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Fig. 2. Specific heat of wire material as a function of temperature.

IV. THE “CELL” SIMPLIFICATIONS

The simplifications that lead to the definition of the cell are
now detailed.

A. Geometrical simplifications

An infinitely long coil is assumed, i.e. end-effects are dis-
regarded. The turns are assumed to be connected in series and
carry the same current. One may for these reasons restrict the
analysis to a domain limited by two planes perpendicular to the
wire and separated by a distance L, i.e. such that exactly one
turn fits into the domain. Because of the absence of any shield-
ing, the problem is open. This is taken into account by using
a shell transformation [2]. The problem is finally assumed to
be axisymmetrical, i.e. helix effects are neglected. Motion in-
duced currents are negligible.

B. Lagrangian approach, adiabatic boundary condition

The Peclet number, Pe = ρcvL
λ

, represents the ratio of the
heat transported by material convection (due to the movement
of the wire) and the heat transported by conduction. In this
application, Pe > 200 at any temperature. That means that
conduction is negligible in comparison with convection in the
direction of the movement. This situation is likely to cause se-
vere numerical instabilities if an adequate scheme (up-winding)
is not chosen for the discretisation of the material derivative in
(3).

In this case however, due to the assumed axial symmetry
of the simplified system, a better approach exists that pre-
serves the numerical properties of the system to solve (auto-
adjointness). The cell domain (grey zone on Fig. 1) is defined
as enclosing a fixed section of the wire, i.e. the cell drifts along



at the same speed as the wire. As the motion goes, the cell
domain crosses successively the turns of the coils but contains
exactly one turn at each instant of time, as long as one remains
inside the oven. This Lagrangian approach allows to assume
an adiabatic thermal boundary condition at the external bound-
aries of the cell, i.e. conduction is neglected in comparison with
convection in the direction of the movement, what is now jus-
tified by the high Pe number. Only the boundary Γ, which is
internal, is crossed by the heat flux q(T ) defined by (6).

C. Constitutive law

In a nonlinear problem, a substantial part of the assem-
bly time is devoted to the evaluation of the constitutive laws.
Costly expressions obtained by interpolation have therefore to
be avoided. For the material under consideration, the depen-

1e+02

1e+03

1e+04

1e+05

1e+06

0 1 2 3 4 5 6 7

M
ag

ne
tic

 re
lu

ct
iv

ity

Induction field [T]

original
analytic

Fig. 3. Concise analytical expression of the magnetic reluctivity compared
with the original curve.

dency with induction b of the magnetic reluctivity ν(b) can be
represented with enough accuracy (See Fig. 3) by

ν(b) =











ν0

µr

if b ≤ b1
ν0

µr

10α(b−b1) if b ≤ b2
ν(b2)b2+ν0(b−b2)

b
if b > b2

(8)

whence, after a few algebraic manipulations, the concise ex-
pression

1

ν(b, T )
=

1

ν0
+

√

Tc − T

Tc − T0

(

1

ν(b)
−

1

ν0

)

(9)

where T0 is the temperature at which ν(b) has been measured.

D. Time stepping and non linear iteration

It is classical in induction heating problems to assume a har-
monic induction field, represented by phasors, coupled with a
transient temperature field. The time step is chosen accord-
ing to the time scale of the thermal phenomena. In order to
preserve the numerical properties of the system to solve (sym-
metry and positive definiteness of the matrix), the coupled sys-
tem is solved by weak coupling, i.e. one nonlinear iteration is
done alternately for each subsystem (magnetic, thermal), the
field values being each time updated for the evaluation of the
material characteristics. This extra iteration level is not disad-
vantageous because of the importance of the nonlinearities of
the subsystems.

The relaxed Picard technique (with relaxation factor 0.2) is
preferred to the costly computation of the tangent matrix. It
has been noticed that adding the tangent matrix for the radia-
tion term only (which involves the fourth power of the surface
temperature) leads to a significant acceleration of the conver-
gence.

V. ADAPTED MESHING
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Fig. 4. Skin depth, δ =

√

2

ωσµ
, in the wire, as a function of temperature.

The computation of eddy currents does not cause major dif-
ficulties provided a sufficiently fine mesh is used in the skin of
the conductors. The skin depth, which varies with temperature
(Fig. 4), is 70µm in the worst case, i.e. at the beginning of
the heating process. If that value is very small with respect to
the overall characteristic length of the oven, it is already more
reasonable if compared to the characteristic length of the cell.
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Fig. 5. A mesh adapted for skin effect in the inductor (above) and in the wire
(below).

No theoretical rule exists to optimise a mesh for a good rep-
resentation of dynamical effects such as eddy currents. More-
over, because of the existence of a moving demagnetisation



front (See Fig. 7 below), the skin effect is not always located
at the same place. A non uniform regular mesh with rectangle
elements, manually refined according to experience and con-
vergence observations, has been used in the conductors (See
Fig. 5).

VI. RESULTS
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Fig. 6. Time evolution of the temperature at different positions inside the wire
(x = 0, 0.25 r, 0.5 r, 0.75 r, r).

Fig. 6 shows the heating up of the surface of the wire. A
steep slope is observed as long as the material is completely
ferromagnetic. The temperature is then levelled off during the
phase change and starts to increase again, with a less steep
slope, when the material is completely demagnetised.
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Fig. 7. Current density in the wires at different instants of time.

Fig. 7 shows radial plots of the current density in the wire at
different instants of time. A front of demagnetisation is clearly
seen to advance from the surface of the wire inwards, pushing
along a zone with skin effect. The interval of time during which
the front progresses corresponds with the constant temperature
observed on Fig.6.

The two previous graphs are typical outcomes of the analysis
of a strongly magneto-thermal coupled problem. The cell has
been designed in such a way that those results are faithful to
the phenomenology in play in the global system.

However, the cell methodology is more than a local analysis
of the coupling. The cell retains as much as possible relevant
parameters of the complete system: materials, radius of the
coil, supply, . . . As an example, the time evolution of the power
supplied to the cell and of Joule losses in the wire (Fig. 8),
placed in perspective with the timing of the heating-up of the

wire (Fig. 6), gives a pertinent insight into the interrelations be-
tween the observable quantities that describe the system. That
knowledge is likely to be formalised at the cell level in order to
be reusable for an analysis at the level of the complete oven.
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Fig. 8. Active power supplied to the cell and Joule losses in the wire as a
function of time.

The study of the cell already represents a few hours of com-
putation on a personal computer. The mesh has about 8000
nodes. That represents 2*8000 (a) + 5000 (T ) unknowns. The
transient calculations were done with 200 time steps, compris-
ing each 20 nonlinear iterations in average, i.e. about 4000
(a) + 4000 (T ) linear systems solved with GMRES+ILUT. All
computations were done with the packages [3], [4].

VII. CONCLUSION

The numerous simplifications that have been granted to de-
limit the cell model (2D, axisymmetry, Lagrangian, adiabatic)
make so that the numerical values computed on basis of the
cell model are certainly different from their value in the global
system. The cell model is not intended to be a good model of
the complete system. The cell methodology is rather a way to
exploit the power of the FE method at an intermediary level
whenever the modelling of the complete system is out of reach.
The cell has been designed in such a way that the intricate inter-
relations between observable quantities of the complete system
(e.g. the dynamics of the demagnetisation front and how it af-
fects the distribution of the eddy currents and losses) can be
analysed at the cell level by in-depth numerical analysis of its
behaviour under a wide range of sollicitations. Furthermore,
the knowledge gained at the cell scale can, in a further step,
be exploited to work on a description of the complete system,
what would certainly not have been possible in this case with-
out the proposed intermediary step.
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