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Abstract 
 
The torques of a magnetic brake and a solid rotor induction machine, fed by 
sinusoidal voltage sources, are simulated by a motional finite element method. 
Oscillatory solutions occurring for motional models with elevated velocities, are 
prevented by adaptive mesh refinement relying upon intermediate solutions 
stabilised by upwinded finite element test functions. A relaxed successive 
approximation deals with the non-linear material properties. The connections of 
the conductors and windings within the finite element model to external loads, 
impedances and supplies are represented by an electric circuit and added to the 
system of equations. The technical examples indicate the advantages of the 
motional formulation. 
 
1. Introduction 
 
A conductive material moving in a magnetic field experiences eddy currents [1]. 
For increasing speeds, the eddy currents are pushed towards the surface of the 
conductive material in the downwind direction, i.e. the direction of the velocity. 
The reverse direction is called the upwind direction. The currents generate forces 
and Joule losses. There are numerous applications of motional eddy currents, 
e.g. induction machines, magnetic brakes [2], magnetic levitation or suspension 
devices and non-destructive testing tools [3]. The accurate simulation of 
motional effects, however, is still challenging. Transient finite element 
simulation is a common practice, but suffers from excessive computation times, 
especially for models with complicated geometries and models experiencing 
small skin depths, which both require fine meshes. Two alternatives are possible 
but are based on specific assumptions. If the magnetic field at the interface 
between the moving bodies features a particular regularity, the motional effects 
can be simulated by a non-motional formulation relying upon the slip 



transformation technique [4]. This approach is applicable to three-phase 
induction machines. For models with uniformly moving parts, such as solid rotor 
induction machines and electromagnetic rail braking systems, the motional eddy 
currents can be accounted for by an additional, motional term in the partial 
differential equation [5]. For the steady-state simulation of these devices, a 
motional formulation is preferred over a transient one because time stepping, 
which is expensive for large models, is avoided. In this paper, the motional 
formulation is equipped with an adaptive mesh refinement strategy, an 
upwinding technique, a relaxed non-linear loop and an external circuit coupling 
mechanism, which are required to apply the formulation to technical models. 
 
2. Motional finite element formulation 
 
A rigid body is said to be uniform with respect to its movement if the movement 
does not change the configuration of the model. This requires the moving bodies 
to be infinitely long in the direction of the motion and to have a constant cross-
section perpendicular to the velocity vector. In the case of translation, the 
moving body corresponds to an arbitrary cross-section extruded along the 
direction of the motion. Examples are rail braking systems for high speed trains 
[5] and linear induction motors with a solid translators [6]. In the case of 
rotational movement, the moving body consists of concentric tubes. This is true 
for the rotational magnetic brake and the solid rotor induction machine 
considered as examples here. 
The formulation for the steady-state simulation of motional eddy currents in 
uniformly moving bodies, is derived by introducing the magnetic vector 
potential  and the electric voltage V  into the Maxwell equations. Because the 
excitations are sinusoidal in time, it is convenient to represent all field quantities 
by the phasors 

A

A  and V : 
 
 { }tje ω= AA Re  ; (1) 

 { }tjeVV ω= Re  (2) 
 
with  the electric pulsation. The laws of Ampère and Faraday-Lenz are 
combined yielding one single partial differential equation 

ω

 
 ( ) Vj ∇σ−=ωσ+×∇×σ+×∇ν×∇ AAuA  (3) 
 
with  the velocity, ν  the reluctivity and u σ  the conductivity. 
The devices considered here, are simulated by 2D, cartesian models. The cross-
section of a device by the -plane is denoted by ),( yx Ω . The electric excitation 
is perpendicular to Ω . Therefore, the magnetic vector potential has only a z -
component, i.e. ),0, zA0(=A . The cross-sections of the devices are 



triangulated. Linear finite elements  are associated with the vertices 

 of the finite element mesh. The finite element solution for 
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linear combination of  with the corresponding coefficients ),( yxN j jzA ,  solved 

from 

[ ] [ ]ij mk +

∫
Ω





 ∂
ν=kij

∫
Ω






σ=ijm

ijl

i
f

Pe
h

 
 [ ]

ijzijij fAl =+ ,  (4) 
 
where 
 

 Ω





∂

∂

∂
∂

+
∂

∂

∂
d

y
N

y
N

x
N

x
N jiji ; (5) 

 Ω





∂

∂
+

∂

∂
d

x i
j

y
j

x N
y

N
v

N
v ; (6) 

 ; (7) ∫
Ω

Ωωσ= dji NNj

 ∫
Ω

Ω∇σ−= diNV . (8) 

 
The system matrix is sparse, but because of the presence of , not symmetric. 

The system is solved by preconditioned Krylov subspace solvers such as e.g. Bi-
Conjugate Gradients Stabilised and Generalised Minimal Residual with a 
Successive Over-Relaxation preconditioner [7]. 

ijm

 
3. Upwinding combined with adaptive mesh refinement 
 
The governing partial differential equation (3) is a convection-diffusion 
equation. For this type of equations, it is known that the finite element solution is 
numerically unstable, i.e. may contain spurious oscillations, if the convection is 
dominant over the diffusion [8] (Fig. 1a). A sufficient but not strictly necessary 
condition for numerical stability is 
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where  is called the Péclet number according to the characteristic mesh size 

 of the finite element discretisation. 



(a) (b)  (c)  
 
Figure 1: (a) Finite element solution of a convection dominated problem; (b) 

non-uniformly refined mesh achieved by the combined upwinding, 
adaptive mesh refinement approach and (c) detail of a magnetic flux 
lines on the refined mesh (the ellips indicates a transition layer of 
the magnetic field). 

 
Equation (9) already indicates two possible techniques to cure the numerical 
problem: decreasing the mesh size and/or decreasing the ratio νσu

art

. The first 
approach may lead to unacceptably large models. The second approach changes 
the original differential problem. Here, a combination of both techniques is 
proposed [9]. The reluctivity is artificially augmented by the additional 
reluctivity , yielding the artificial diffusion coefficient addν addν+ν=ν . 

 is chosen such that addν 12 <νarthuσ , which ensures a non-oscillatory 
solution even on a coarse mesh. The artificial diffusion approach is equivalent to 
a particular way of stabilising the finite element method by applying upwinded 
test functions, i.e. test functions getting more weight in the upwind direction [8]. 
Although the finite element solution obtained by upwinding is too diffusive, it 
indicates the places where large eddy currents, and hence, steep transitions of the 
magnetic vector potential, occur. This enables an error estimator to mark the 
corresponding elements for refinement. An error estimator applied to the 
oscillating solution of Fig. 1a would pass a non-reliable advise to the refinement 
algorithm. At the transition layers the mesh size decreases and as a consequence, 
the need for upwinding vanishes. The parts of the moving conductors far away 
from the downwind boundary feature an almost constant magnetic vector 
potential and are not refined by the algorithm. They are excluded for upwinding 
when the transition layers at the downwind boundaries are sufficiently localised. 
This particular combination of adaptive mesh refinement and upwinding yields 
accurate solutions on relatively small finite element meshes. The strategy results 
in non-uniform mesh refinement, which is advantageous for technical models 
commonly featuring complicated geometries and local motional eddy current 
effects (Fig. 1b and Fig. 1c). 



4. Field-circuit coupling 
 
The stator coils are connected to a voltage supply and to lumped parameters that 
model the resistances and inductances of the end windings. The currents through 
the rotor parts are forced to zero. The additional equations modelling these 
external circuit couplings, are added to the finite element system: 
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zl  is the model length.  and  are the parts of pΩ aΩ Ω  corresponding to the 

stranded conductor  and the solid conductor  respectively.  and  are 

the number of turns and the cross-section of the stranded conductor q .  is 

the resistance matrix associated with the stranded conductors and the circuit 
components put in series to them.  is the admittance matrix associated with 
the solid conductors and the circuit components put in parallel to them.  are 

the voltages of the sources exciting the stranded conductors. 

p a qN qS

pqr

pv
abg

qi  is the current 

through stranded conductor . q bv  is the voltage drop along solid conductor . 
A more general treatment embedding the solid and stranded conductors in an 
arbitrary circuit is presented in [10]. 
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5. Non-linear loop with underrelaxation 
 
Ferromagnetic materials offer high permeabilities and are therefore commonly 
applied in technical devices. Ferromagnetic saturation has a large influence on 
the device behaviour and hence, has to be faced in the simulation. At elevated 
speeds, large magnetic flux densities occur at the downwind boundaries which 
gives rise to substantial saturation and additional leakage flux. For time-
harmonic simulation, an effective saturation characteristic is used [11]. The non-
linear material characteristic can be introduce in the simulation by the Newton-
Raphson technique [12] and the successive approximation method. Here, the 
second approach is chosen. The reluctivity ν  in (5) is adjusted between 
successive solutions of linearised systems as in (10). A superscript (  indicates 
the non-linear iteration step. The local occurrence of highly saturated material 
causes a poor convergence of the non-linear loop. An underrelaxation factor 

 is applied to the successive solutions: 
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the solution of (10) with the reluctivities .  is adaptively chosen out of 

the set 
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where  is built by substituting the reluctivities ν  in (5). )1( +m

ijk )1( +m

 
6. Rotational magnetic brake 
 
A rotational magnetic brake consists of a stator yoke with four poles and a solid 
iron rotor (Fig. 2a). The stator windings excite a four-pole DC air gap magnetic 
field. The rotor is a conductive solid iron cylinder. The magnetic properties of 



the iron are highly non-linear. The pole shoes are designed to spread the 
magnetic flux over a large area on the surface of the conductive, soft iron 
cylinder. The symmetry of the geometry and the excitation enables the 
application of a reduced 2D model considering one pole pitch with periodic 
boundary conditions (Fig. 2b). 
For large excitation currents, the saturation of the rotor iron causes some leakage 
flux between the stator poles. As the speed increases (from left to right in 
Fig. 3), the magnetic flux lines are pushed towards the surface of the solid iron 
rotor. Because of ferromagnetic saturation, it is not possible to build up a dense 
flux pattern. As a consequence, the flux in a ferromagnetic brake is more 
distributed towards the rotor inside and the air gap than for the case of a similar, 
but non-ferromagnetic brake. 
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Figure 2: (a) Cross-section of a rotational magnetic brake and (b) initial finite 

element mesh. 
 
 

(a)    (b)    (c)  
 
Figure 3: Rotational magnetic brake: computed magnetic flux lines for the 

magnetic brake with the rotor rotating at (a) 1 rad/s, (b) 10 rad/s and 
(c) 100 rad/s. 
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Figure 4: Speed-torque characteristic of the rotational magnetic brake. 
 
 
The torque generated by the brake depends on the rate of flux coupled between 
the stator and the rotor. The torque is computed by an improved Maxwell stress 
tensor method [13]. The torque is substantially influenced by the saturation. The 
ferromagnetic saturation is responsable for a larger torque compared to a brake 
with an equivalent, but linear magnetisation characteristic (Fig. 4). This technical 
example shows the importance of non-linear simulation and sufficiently small 
meshes at the skin layer of moving bodies. 
 
7. Solid-rotor single-phase induction machine 
 
The second example is the solid-rotor single-phase induction machine proposed 
as the Testing Electromagnetic Analysis Methods (TEAM) Workshop problem 
#30 [14],[15]. The solid rotor consists of an iron core covered by an aluminum 
layer (Fig. 5a). The stator contains a single-phase winding and an iron yoke. The 
winding is not embedded in slots to enable a comparison with the analytical 
solution derived in [15]. In this example, all material characteristics are linear. 
Because of the uniformity of the rotor, transient simulation can be avoided by 
applying the formulation proposed in this paper. The alternating field excited by 
the single-phase winding is extreme at a certain time instant t  (Fig. 5b). At , 
a quarter of a period later, the observed flux is the reaction field of the aluminum 
rotor part (Fig. 5c). The latter is, however, considerably smaller than the former. 
The motional formulation is applied for different velocities to compute the 
speed-torque characteristic of the device (Fig. 6). The results match the 
anlytically determined values. 
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Figure 5: Solid-rotor single-phase induction machine: (a) geometry, (b) 

magnetic flux lines at  and (c) magnetic flux lines at t . 0t 1
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Figure 6: Speed-torque characteristic of the solid-rotor induction machine (the 
crosses indicate the analytical solution of [15]). 

 
8. Conclusions 
 
For devices featuring uniformly moving bodies, the steady-state simulation of 
motional eddy currents is based on a motional, time-harmonic formulation. 
Adaptive mesh refinement combined with an upwinding technique overcomes 
the numerical problems typical for motional partial differential equations. An 
external electric circuit coupling and a non-linear iteration loop join the 
formulation and enable its application to technical devices. The method is 
successfully applied to a magnetic brake with a ferromagnetic rotor and a solid-
rotor single-phase induction machine. 
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