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Harmonic boundary conditions for circular inclusions
and their coupling to external circuits

H.De Gersem and K.Hameyer

Abstract: The effect of the magnetic field in a homogeneous subdomain of a finite-element model is
simulated by an analytical expression imposed at its boundary. In the case of a stranded or a solid
conductor cross-section, the coupling to an external circuit is considered. The hybrid finite-element
harmonic-boundary equivalent-circuit approach offers the designer a powerful simulation tool,
yielding models attaining the same accuracy when compared to pure finite-element models but
requiring less (by a factor of 10) computation time. The relationships with the boundary-element
method and impedance boundary conditions are established. The application of the methods
proposed for a cable model illustrates the benefits of the proposed approach.

1 Introduction

Quasi-static electromagnetic simulation of technical devices
suffers from difficulties related to the nonlinear characteris-
tics of ferromagnetic materials, the complicated geometries,
the sophisticated excitation patterns and the need to
consider second-order effects such as expansion due to
heating and mechanical deformation [1, 2]. Hence, model-
ling, e.g. transferring a device into a discrete model fitting
within the available computational resources, tends to
become a designing process in itself. Finite-element (FE)
simulation is widespread, mainly because of its natural suit-
ability to consider arbitrary geometries and nonlinearities at
a local level. For certain parts of a model, e.g. airgaps,
cooling ducts, small conductors, far-field regions and slid-
ing surfaces, other discretisation methods, such as the
boundary-element (BE) method (BEM), equivalent circuit
(EC) simulation and local analytical solutions, may be
more convenient. The combination of two or more discreti-
sation methods within the same model, yields hybrid
approaches, e.g. FEM-BEM [3] and FEM-EC [4]. For a
large range of models, the application of analytical solu-
tions to parts of the model is advantageous. In this paper,
local analytical approaches for circular inclusions in 2-D
magnetic models are presented. The emphasis is put on
their formulation as boundary conditions, here called
‘harmonic boundary conditions’ (HBC), and their applica-
tion to conductors embedded in external electric circuits.
Technical examples illustrate the flexibility and the benefits
of the presented approach.

© IEE, 2001

IEE Proceedings online no. 20010532

DO 10.1049/ip-smt:20010532

Paper first received 10th November 2000 and in revised form 14th May 2001

H. De Gersem was with the Katholieke Universiteit Leuven, Dep. ESAT, Div.
ELEN, and is now with the Computational Electromagnetics Laboratory,
Darmstadt University of Technology, SchloBgartenstrale 8, D-64289 Darm-
stadt, Germany

K. Hameyer is with the Katholieke Universiteit Leuven, Dep. ESAT, Div.
ELEN, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

IEE Proc.-Sci. Meas. Technol., Vol. 148, No. 6, November 2001

2 Local analytical models

Consider a two-dimensional (2-D) model with the compu-
tational domain QU € consisting of the subdomaln €2
discretised by FEs and the subdomain € to which analyti-
cal models are applied (Fig. 1a). Suppose the boundary I’
of the subdomain Q; consisting of a finite set of simple
primitives and the materials within Q; homogeneous, linear
and isotropic. The magnetic field within € is described by
a second-order partial differential equation (PDE). If the
field quantities at I'; are known, an analytical solution for
the magnetic field inside Q, can be constructed. Hence, the
accuracy of the simulation results within €2, only depends
on the accuracy of the material data, the boundary condi-
tions and the excitation.

A, (r0) =4, (6)
Iy

a b
Fig.l‘l Computational domain € U € and the benchmark solid conductor
model

Numerical methods for solving PDEs approximate the
exact solution by a series expansion in terms of a finite set
of base functions, e.g. FEs and BEs defined upon a mesh,
currents and voltages defined along EC branches. If the
space spanned by the base functions is not eligible to reflect
the true behaviour of the considered field, the approxima-
tion will be poor. In subregions of the model in which an
analytical solution exists, this can be overcome by plugging
the local analytic expression for the magnetic field into the
FE model. This local intervention may substantially
enhance the accuracy of the overall computation.
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In general, an analytical solution is constructed as an
infinite series expansion of the eigenfunctions of the differ-
ential operator. For particular shapes of € these eigen-
functions simplify to very easy expressions, e.g. a Fourier
series developed at the circular border of a disc (Fig. 1b).
The analytical solution is expressed in terms of the still
unknown field quantities at the boundary. Its derivative
relates the flux and the magnetomotive force at each point
of T, to each other. The expression is plugged into the FE
formulation as a boundary condition.

Local 2-D and 3-D analytical solutions in combination
with FE methods are already proposed as highly accurate
post-processing tools in [5, 6]. Here, the local analytical
solution is embedded in the solution process of the FE
model itself. All approaches aim at enhancing the accuracy
or reducing the model size by partially relying on analytical
techniques.

3  Finite-element formulation

By the choice of the magnetic vector potential A by B =V
x A, the magnetic flux density B is assumed to be diver-
gence-free. The integration of Faraday-Lenz’s law yields E
= _VV — 9A4/dt with E the electric field and ¥ the electric
scalar potential. The formulation applied here is the 4 — ¥/
formulation expressing Ampére’s law by

Vx (wVxA)+ a%ﬁ:— =—oVV (1)

v and o are the reluctivity and the conductivity of the
material. u = 1/v is the permeability. For 2-D models with
a translatory symmetry and a voltage drop V¥ only in the
z-direction, eqn. 1 simplifies to
0A, oA
— . 7A. - 7 = - 2
V-(wVA,)+o T EZAX (2)
with A, the z-component of 4 and €. the length of the
model. In this paper, only time-harmonic excitation is
considered. The methods presented here, however, easily
generalise to transient, axisymmetric and 3-D models. All
material parameters are assumed to be constant in time.
Nonlinearities are resolved by successive approximations
based on effective material characteristics [7]. The field
quantities are represented by their respective phasors:

A.(t) =Re {AzeJ“t} (3)

AV (t) = Re { AV e} (4)

with @ = 27f the pulsation and f the frequency of the
applied excitation. The governing PDE is

V. (VVA,) + JwoA, = —%AK (5)

The magnetic vector potential is discretised on € by 7y
base functions N{(x, y) with as supports, the sets of triangu-
lar elements surrounding each of the mesh vertices:

ny

A, =Y A N,(a,y) (6)
j=1
The Galerkin FE method consists of weighting eqn. 5 by
the same functions N; along €2 The resulting symmetric
system of equations is
> ki + 1) Az + 90 = fi

J

1=1,...,nf (7)

with
kis :/ vVN; - VN;dQ (8)
Qf
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lijZ/ jwaN,;deQ ) (9)
Qf
0A,
i=— | v—N;
g Fu o dr (10)
g -
fz‘:/ Z AV N;dQ (11)
Qy vz

with 9/on the normal derivative outward to I'. The parti-
tions of I' = I'; u I, U T's correspond to the following.

I Dirichlet boundary condition: T ;is a flux wall. The mag-
netic vector potential is constrained to a prescribed value.
There are no FE shape functions associated with the nodes
on T, Hence, the coefficients k;, /;, g; and f; for all nodes i
on I, vanish.

I',; Homogeneous Neumann boundary condition: T, is a flux
gate, d4-/on = 0 and g, for all i on T, vanishes.

I Robbins boundary condition: For second-order PDEs, a
Robbins boundary condition brings the field quantity nto
relation with its normal derivative. This represents the rela-
tion between the flux and the magnetomotive force at I'.
Q, behaves somehow like a black-box magnetic impedance
experienced by the magnetic field of Q. This expression is
inserted in g;. '

4  Analytical circular inclusion

Consider the disc Q, with radius ry of Fig. 15. The reluctiv-
ity v and the conductivity ¢ are assumed to be homogene-
ous and linear. The governing PDE eqn. 5 within € is in
cylindrical coordinates (r, 9):

18/ 0A.\ 10 [ 0A, o
I =z - — ——Z "o - — AV
" or (W ar ) 2 50 (” 26 )””“AZ v
(12)

The first two terms are diffusive, the third is a reaction
term modelling the eddy currents, the one on the right-
hand side represents the electrical excitation. The voltage
drop phasor AV only depends on r. By separation of varia-
bles, the analytical solution for this particular geometry is

A (r,0) = S(r) + ag Ro(r)
+ Z Ry (r) (ay, cos(kf) + by sin(k8))  (13)
k=1

S(r), here called the excitation function, is the particular
solution of the nonhomogeneous PDE with S(rp) = 0. The
other terms constitute the solution of the homogeneous
PDE. The impedance functions Ry(r) depend upon the
presence of the reaction term. The FE approximation at I
determines the Fourier coefficients of 4. at I'y:

MNe
: 1
4o = Zﬁz@;
j=1 0

2m

N,(ro,6)d8  (14)

Ujo

s 1 2
a, = ZAZJ; ; N;(rg,6) cos(kf)do (15)
j=1

Ujk
s 1 27
by = A;j; L N]'(To,g) 31n(k9)d9 (16)

=1 _

Uik
n, is the number of nodes on T. From here on, i and j
count the nodes on Ty, and N; and N, denote the FE shape
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functions restricted to T,. The diffusion through I's is

27 aA
g; = / y—= (7‘0, Q)Nﬂ'ode (17)
0 37”

and, in general, depends on the magnetic vector potentiais
A atl,

gi = hi+ Y _(ma +dij) A (18)
=1

by the boundary diffusion coefficients

hi = vroS' (ro)wio (19)
174
mij = 2—7;7"01%(7”0)%0”]‘0 (20)
(oo} v ) .
dij = Z ;ToRk(To)(uik‘uJ‘k + vikvjk) (21)
k=1

The coefficients m; and dj; are added to the coefficient
matrix, the terms /; to the right-hand side. m; = m;; d; = dj
and hence the symmetry of the system matrix is preserved.
As d;# 0 for all nodes i and j on T, a relatively dense part
is introduced in the system matrix. In the following
Sections, dealing with particular kinds of circular inclusion,
the impedance and excitation functions are defined.

5 Nonconductive inclusion
For nonconductive circular inclusions, €.g. cooling chan-

nels, eqn. 12 simplifies to the Laplace equation. The excita-
tion and impedance impedance functions are

N
R = () (23)
o
The boundary diffusion coefficients are
h; =0 (24)
ms; = 0 (25)
v
dij = Z ;k(uikujk + vikvjk) (26)

k=1
my; vanishes, indicating the independence of the Laplacian
on a constant term.

6 Stranded conductor

Consider a stranded conductor with current I, Ny, turns,
the circular cross-section g, with surface A, = 7> and
boundary T, (Fig. 2a). The fill factor f,,, denotes the frac-
tion of conductive material in €, The current density in
Q,, is assumed to be constant and replaces the source term

in eqn. 12.

Jstr = Natr Istr (27)
Astr
The lack of eddy currents is imposed by omitting the reac-
tion term in eqn. 12. Hence, the differential operator and
the impedance functions remain the same as in the previous
case. The source term gives rise to the excitation term

2,2
Ssir(r) = _Atz_rgljsﬂ (28)
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a b

Fiq.2 Cross-sections Q,, and £, of a stranded and solid conductor, respec-
tively, modelled by a HBC within an FE model

a Stranded conductor

b Solid conductor

Hence, the weak form g; at I'y,, only differs in the term
j\rstr

he=—

uiOIstr = pi,st‘rIstr (29)

reflecting the magnetomotive force excited by the stranded
conductor experienced by the flux crossing I's. In the case
of current excitation, this term is put on the right-hand
side. If the stranded conductor is embedded in a more
sophisticated electrical circuit, L, is treated as an unknown
and the terms in eqn. 29 remain on the left-hand side. An
extra equation is required to describe the electrical behav-
iour of the stranded conductor. The voltage drop AV,
across the stranded conductor is expressed 1 terms of the
average voltage drop experienced by the wires: )

_V—té—f/ (- VV(z,y)dQ (30)
Ast'r Qatr

Stranded conductors prevent eddy currents and the corre-
sponding losses. They, however, experience induced volt-
ages. Because of Faraday-Lenz’s law, the gradient of the
electric scalar potential is related to the current and the
magnetic field by

AVstv" =

?J—St—r— + JwA, (z,y) (31

str0

—VV =

Hence, the voltage drop across a stranded conductor is

. — Nsir
AVir = (Rstr +]WLst7')Istr + Z _Azjjwest'r‘ ‘Esi_ujo

j=1
(32)
17\]-2 E +
Rsir = str 277 33
’ fst'rO-Astr ( )
N2, Letr
st = H__58t_7r__t_ (34)

R, is the DC-resistance of the stranded conductor. The
self-inductance L, corresponds to the situation where no
flux crosses I'y, and the inductor only experiences the
flux excited by itself. Eqn. 32 is scaled by the factor Yy, =

~1/70f,, i order to symmetrise it with respect to the
respective terms of eqn. 29 in the magnetic equations.

7 Solid conductor

In the case of a solid conductor, a reaction term appears in
the PDE. The analytical solution is much more compli-
cated when compared to the previous cases. The excitation
and impedance functions are

Io(&r

AVior
Sooilr)=——— 11—
) Jwlsol ( I (éro)
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Reoin(r) = 2E7) (36)

I, (€ro)
with ¢, the length and AV, the voltage drop along the
solid conductor (Fig. 2b). I, denotes the modified Bessel
function of the first kind of order k and & = V(ywou). The
additional terms in the system of equations are
14 f To I 1 (f T 0)
h; ]Wgsol T (57“0) Uio AV = qhsolAVYsol
(37)

_ v &rolg(€ro)

9T o To(erg) 00 (38)

di; = ]; %&;T&(T%)-Q(uiku]‘k + VirVjk) (39)

Similar to the stranded conductor case, AV,, may be
unknown. An additional equation for the total current I,
through the solid conductor is appended to the system:

Isol = /
Q

Ns
TeordQ = Yoo AVios = Y X@j,c0lA.
sol 7=1

(40)

2
Yy = 9770 2 2170) (1)
lsor &m0 Io(&ro)

Y, 1s the AC admittance of the solid conductor when

isolated from the rest of the model. The limit of Y, for

o — 0 yields the DC conductance of the solid conductor.

The additional circuit equation is symmetrised with respect

to the unknown excitation term eqn. 35 by the factor y,,; =
/7 wgsol'

8 External circuit coupling

The solid and stranded conductors in the magnetic model
are embedded within an external lumped parameter model,
comprising external voltage and current sources, resistors,
inductors and capacitors. The expressions in eqns. 32 and
40 fit within the topological field-circuit coupling scheme
developed in Fig. 8. The method yields a few extra equa-
tions in the coupled system matrix while preserving the
symmetry of the system.

9 Implementation issues

In practice, the application of an infinite series at T is
impossible. Moreover, it is not recommended as in most
models, only a few terms are already sufficient to ensure an
accuracy far beyond the one provided by the FE discretisa-
tion. All Fourier series considered in the practical computa-
tions are truncated to k,,,, terms. An adaptive choice of
Kk, is suggested by the Nyquist criterion relating the
number of harmonics treated by the HBC, to the number
of FE nodes on T,. In the case of solid conductors, the
Bessel functions have to be evaluated with an appropriate
accuracy. For large orders, this may become especially
troublesome. All expressions containing Bessel functions
are rewritten in a form suited for numerical calculus, and
specialised routines have been applied [9-11].

10 Discretisation error

The convergence of the discretisation error is studied by a
numerical experiment. A solid conductor model for which
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an analytical solution exists, serves as a benchmark to
compare the coupled FEM-HBC approach to conven-
tional FE simulation (Fig. 1b). The copper solid conductor
is surrounded by air and submitted to a homogeneous
magnetic field pulsating at 500Hz. The choice of the
geometrical dimensions is guided by the typical situation in
wire windings where the cross-sections of the conductors
only constitute a fraction of the cross-section of the entire
winding. As an error indication, the computed power loss
is referred to the analytically obtained results. The conver-
gence of the error with respect to the number of degrees of
freedom is plotted in Fig. 3. As HBC does not need a
mesh within the solid conductor cross-section, it is obvious
that this approach attains a prescribed accuracy for smaller
models when compared to pure FEM. This is however an
unfair comparison, because the FEM-HBC formulation
yields a more dense matrix and, hence, requires relatively
more time to solve the system of equations by iterative
solvers. Fig. 4 indicates however that also with respect to
the computation time, FEM-HBC outperforms conven-
tional FEM. As in this benchmark model only one spatial
harmonic is present in the excitation, the series expansion
constructed by the HBC boundary condition already
attains an optimal Fourier expansion for k,,,, = 1. As a

100

1071,

1072

discretisation error

103

1074

10'5 : N
100 102 10 108
degrees of freedom

Fig.3 Convergence of FEM and FEM-HBC discretisation errors with
respect to number of degrees of freedom for a HBC in a homogeneous field

(i) FEM

(i) FEM—HBC

100

1071

_.
<
o

103

discretisation error

100

105 ;
0 102 100 102 104

computation time, s

Fig.4 Convergence of FEM and FEM-HBC discretisation errors with
respect to computation time for a HBC in a homogeneous field

(i) FEM

(i) FEM-HBC
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consequence, this particular boundary condition favours

the HBC treatment and the benchmark still lacks general- -

ity. In Fig. 5, the convergence study is repeated for an exci-
tation of the form

—Q’FO if z < =Ty

A, (r1,0) =1 ax if —rg <z <rg (42)

aro if z > To

Now, an infinite set of spatial harmonics is present in the
excitation and hence in the field solution. The influence of
Kk, o1 the accuracy is considered in Fig. 5. The numerical
experiment indicates that the accuracy depends more on n
than on k,,,. Also, doubling k,,. only increases the
computation time by a few percent, whereas doubling the
number of FE nodes multiplies the latter by a factor of 3.
The observed convergence behaviour motivates the applica-
tion of the FEM-HBC approach to technical models incor-
porating regularly shaped, linear and homogeneous
inclusions.

100

108k

discretisation error

104k

1 045 L "
102 100 102 10
computation time, s

Fig.5 Convergence of FEM and HBC-FEM discretisation errors with
respect to computation time for a HBC in an arbitrary field

(i) FEM

(ii)~(v) FEM—HBC for k, 1, 4, 16, 64

11 Relation to BEM

Both, BEM and HBC only consider discretisations on the
boundary of the subdomain of interest. This suggests a
strong relationship between BEM and HBC. There are,
however two important differences: discretisation and
shape.

Discretisation, BEM approximates the exact solution by a
series expansion of local Green’s functions, whereas HBC
applies harmonic functions. As the latter are eigenfunctions
of the PDE, the solution at the boundary is exactly propa-
gated towards the inside of Q. At the boundary, the
convergence of the piecewise polynomial approximation
applied by BEM is governed by the properties of the
Taylor expansion, the order of polynomials and the mesh
size. Fourier series feature uniform convergence which may
be more accurate.

Shape: BEM is applicable to subdomains with arbitrary
geometries, whereas a HBC requires an analytical solution
to be developed for each particular shape of the domain.
As a consequence, HBC does not offer the same general
applicability as BEM.

The implementation of HBC is only recommended for
some particular geometries that frequently occur in the
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technical models considered, e.g. cooling channels, solid
and stranded conductor with circular cross-sections in elec-
tromagnetic devices. HBC is only beneficial when com-
bined with a general discretisation method and, in the case
of conductors, also coupled to a circuit description. Here,
HBC coupled to FEM and ECs, is presented as an enrich-
ment of the set of available modelling tools, enabling fast
and accurate simulation of complicated models that may
be unsolvable by conventional approaches used so far. A
similar inclusion of an analytical model has been consid-
ered for the airgap of electrical machines in [2, 12].

12  Relation to impedance boundary conditions

A magnetic shield for which the geometrical dimensions
exceed the experienced skin depth, is almost impervious for
magnetic flux. An impedance boundary condition (IBC) is
an efficient modelling technique relating the electric and
magnetic fields at the material interfaces to each other [13].
Also with respect to IBCs, external circuit connections can
be considered [14]. The fine discretisation of the thin
current layer at the shield surface is avoided. More gener-
ally, an IBC is a small parameter problem, i.e. treating one
of the characteristic lengths, e.g. the skin depth or the
region’s thichness, as negligible when compared to other
dimensions [15]. The subdomain is replaced by a boundary
condition at its border. HBCs do not rely on these limit
assumptions. HBCs model the true geometry and excita-
tion. The difference in characteristic length is not essential,
nor is it prohibitive. In fact, HBCs become advantageous
over FEs for modelling small skin depths, e.g. in solid
conductors operated at elevated frequencies.

13  Application: cable

A cable (part of a low-voltage power grid) experiences,
besides the 50Hz component, a considerable amount of
harmonic distortion. The cable consists of 35 wires
connected in parallel and is surrounded by insulation mate-
rial, a cage preventing the outside magnetic field and a shell
for mechanical protection (Fig. 6). Owing to skin and prox-
imity effects and due to the magnetic shielding of the cable,
its response strongly depends on the applied frequency. The
FE simulation of this model is cumbersome, because the
meshing of the thin current layers corresponding to
elevated frequencies becomes insurmountable. Here,
instead, HBCs have been applied to the individual wires
(Fig. 7). The HBC formulation achieves highly accurate
results, even if a skin depth of only a few micrometres is
involved (Fig. 8). The twisting of the cable wires is consid-
ered by an external circuit connecting all wires in series.
The dependence of the voltage drop on the applied
frequency is simulated by the FEM-HBC-EC method
(Fig. 9).

insulation wires shielding
Fig.6 Geometry of low-voltage cable
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Fig.8 Mugnetic flux plot of cable model at two instants of time
a When the current attains its maximum
b One quarter of a period later

voltage drop, V

phase, deg

Fig.9 Voltage drop along the cable for different frequencies

14 Conclusions

HBCs have been applied to conductors within an FE
model, to avoid meshing problems related to small skin
depth. A HBC-EC coupling scheme has been developed.
The hybrid FEM-HBC-EC approach was shown to offer
the same modelling flexibility and accuracy as the FEM,

with models which are by a factor of 10 smaller. This has
been illustrated by a cable model.
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