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Full Multigrid for Magnetostatics Using Unstructured
and Non-Nested Meshes

Herbert De Gersem and Kay Hameyer

Abstract—Adaptive mesh refinement and mesh enhancing
techniques, commonly applied in electromagnetic finite element
simulation, give raise to a hierarchy of nonnested unstructured
grids. The application of geometrical multigrid is not straight-
forward. The prolongation operator is adapted to the particular
properties of the mesh refinement. Anti-symmetric boundary
conditions and nonlinear material characteristics are incorpo-
rated. The numerical experiment performed on the model of a
synchronous machine shows optimal convergence for the proposed
multigrid scheme whereas the convergence of classical nested
multigrid becomes troublesome.

Index Terms—Adaptive mesh refinement, finite element
methods, iterative solvers, multigrid methods.

I. INTRODUCTION

F INITE element simulation has found its way to the design
and optimization of electrical apparatus. Unstructured fi-

nite element meshes allow an accurate description of the rather
arbitrary geometries. A prescribed accuracy is achieved by
adaptive mesh refinement based on error estimation, detecting,
e.g., regions with ferromagnetic saturation.

Unstructured meshes and nonuniform mesh refinement are
commonly used in electromagnetic simulation but cause a se-
vere restriction to the application of conventional geometrical
multigrid (MG) techniques, originally developed for uniformly
refined, structured meshes. This paper deals with MG adjusted
to arbitrarily refined meshes. In particular, the prolongation op-
erator within the MG cycle is adapted to the nonnested hierarchy
of meshes that naturally arise when mesh quality improvement
techniques are applied.

The theory is developed using 2-D magnetostatic models. The
partial differential equation , with and

the -components of the magnetic vector potential and the
current density respectively, andthe reluctivity, is discretized
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applying first order linear triangular finite elements .
The system matrix is where

and

II. M ULTIGRID

A. Multigrid in Electromagnetic Simulation

MG methods became a standard solution method in many
application areas [1]. MG approaches entered the field of qua-
sistatic magnetic simulation a few years ago [2], [3]. Nowadays,
research in the field is focused toward the development and
application of algebraic MG schemes [4]–[6] and MG for 3-D
curl–curl operator [7], [8]. Geometrical MG is fully mature
to solve the Poisson equation arising from 2-D and 3-D nodal
formulations for electro- and magnetostatics. Unfortunately,
mainly uniformly refined meshes are considered [9]. Local, but
nested, refinement is considered by a hierarchical MG method
in [10]. Here, the MG idea is extended to nonnested hierarchies
of locally refined meshes [11]. This research is motivated by the
fact that nonuniform refinement, combined to mesh enhancing
techniques, yielding nonnested grids, is particular advantageous
and therefore commonly applied to electromagnetic simulation,
featuring large relative differences in material properties and
local nonlinear ferromagnetic phenomena.

B. Multigrid Method

Linear iterative solvers are very effective to wipe out so called
high frequent errors, i.e., errors occurring at small scales in the
mesh [12]. Unfortunately, the long range errors decay only after
a considerable number of iteration steps. The basic idea of MG
consists of restricting the error to a coarser grid on which it ap-
pears again as a high frequent error and is therefore easily elimi-
nated by an iterative solver on the coarser grid. A MG scheme is
achieved if this concept is recursively applied to a hierarchy of
grids, each of them wiping out the error components within the
frequency bandwidth corresponding to its characteristic mesh
size.

The procedure is depicted in Fig. 1. Solving and
starting from the iterand at iteration step on a mesh with
characteristic mesh size, a few steps of a stationary iterative
solver, such as, e.g., damped Jacobi or Gauss–Seidel, are ap-
plied as pre-smoothing, yielding . The coarse grid correction
consists of restricting of the error to on
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Fig. 1. One multigrid cycle.

a coarser grid with characteristic mesh size, solving the de-
fect equation , with the system matrix de-
fined on the coarser grid, and prolongating up to the defect

on the finer grid. Finally, the defect is added to the iterand,
and a few post-smoothing steps are applied,

yielding the new iterand .
The particular MG cycle, used here, consists of one

Gauss–Seidel pre-smoothing step, the restriction defined by
the adjoint of the prolongation, the coarse grid correction, the
prolongation and 1 Gauss–Seidel post-smoothing step. If the
concept is applied recursively, a hierarchy of finite element
(FE) meshes is required. A V- or W-cycle correspond to one
or two MG cycles respectively, performed on each level [12].
Here, V-cycles are used. On the coarsest level, the system is
solved exactly by an LU-decomposition. A full MG method is
achieved if the coarser levels serve also to determine an initial
estimate for the MG solver at the finer discretizations [12].

C. Non-Linear Multigrid

If ferromagnetic saturation is considered, a Newton–Raphson
linearization is invoked. Due to the changes in the system to
be solved at each Newton step, a slightly different approach is
required. The most recently obtained nonlinear information, that
is gathered in the Jacobian, is transferred to the coarser grids by
the Galerkin approach. The Jacobian on a coarser grid is

(1)

with the Jacobian on the grid and the coarse-to-fine grid
prolongation operator. The MG cycle remains essentially un-
changed. The increased computational work during set-up is
negligible with respect to the cycling time itself.

D. Convergence of Multigrid

The convergence properties of MG depend on the proper
blend of smoothing and coarse grid correction. For each
bandwidth of error components, an appropriate grid on which

Fig. 2. (a) Coarsest mesh, (b) magnetic flux lines of an intermediate solution,
(c) nested refined mesh and (d) mesh refined with aspect ratio enhancement of
a one-pole synchronous machine model; (e) nonuniform mesh refinement.

the components vanish by a few smoothing steps, has to be
provided. Convergence proofs and estimates rely upon the
inclusion of the coarser finite element spaces within the finer
ones. In that case, weak forms of the partial differential equa-
tion can be inherited from one space to the other and optimal
convergence is proved [13]. In the case of nonnested grid, the
spaces are also nonnested and the convergence proof has to rely
upon regularity conditions to which the applied MG cycle has
to be tuned [13].

III. N ON-UNIFORM MESH REFINEMENT

Relevant electromagnetic models usually require unstruc-
tured meshes to resolve for all geometrical details [Fig. 2(a)].
To achieve a prescribed accuracy, adaptive mesh refinement
is applied. Ana-posteriorierror estimator applied to an inter-
mediate solution [Fig. 2(b)], indicates the elements with large
magnetic fields, large energies, large gradients or high levels
of saturation. Only the fraction of elements with the highest
errors, is marked for refinement. Edges in between marked ele-
ments are refined, causing nonuniform refinement [Fig. 2(e)].
Non-uniform mesh refinement, however, tends to worsen the
shapes of the finite elements [Fig. 2(c)]. Large angles are to be
avoided from the numerical point of view [14], [15]. Therefore,
quality enhancement for the mesh is appropriate. Since adaptive
mesh refinement is inevitably nonuniform and because of the
use of unstructured grids itself, the prolongation operator is
much more complicated when compared to the one between
structured and uniformly refined meshes. Moreover, because
of additional mesh enhancement, two successive meshes are
not longer nested [Fig. 2(d)]. The MG scheme has to deal
with restriction and prolongation operators between nonnested
meshes.

A. Edge Swapping

To avoid large angles within the mesh, the Delaunay property
is approximately imposed. The Cline and Renka test is applied
to all edges whether swapping them would decrease the aspect
ratio [16] [Fig. 3(a)]. A Delaunay triangular would be achieved
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Fig. 3. Adjustments of the prolongation operator according to (a) swapping
edges; (b) moving nodes; (c) restoring the original geometry; (d) periodic
boundary conditions.

if this procedure is repeated until all edges fulfill the test. Pro-
ceeding until the number of swapped edges is only a fraction
of the number of edges, already yields a considerable improve-
ment of the mesh quality [16]. Because of the nodal formulation
applied here, swapping edges does not affect the restriction and
prolongation operators.

B. Moving Nodes

To attain a smooth transition from areas with tiny elements
to roughly discretized ones, interior nodes of the mesh are
moved to the centers of the control volumes formed by their
surrounding elements [Fig. 3(b)]. This is done by passing
through the list of nodes until less than a certain percentages
of nodes have to be moved. The prolongation is affected by
this procedure. The common prolongation defined by linear
interpolation between two nodes,

(2)

is not longer valid. Instead, a defect computed on a coarser grid
is prolongated to a finer grid by a projection applying the shape
functions to obtain the value at interior nodes [17]:

(3)

To avoid searching in the mesh during the MG cycles, the pro-
longation operator is constructed during the set-up phase. To
reduce the cost of the prolongation operator, only dependencies
beyond a certain threshold, e.g., , are ad-
mitted to the prolongation stencils.

Fig. 4. Periodic boundary conditions applied to a one-pole model of a 6-pole
synchronous machine with periodicityT along the air gap measured by�.

C. Restoring the Original Geometry

While refining the mesh, nodes are redirected in order to re-
store the original geometry at curved boundaries [Fig. 3(c)]. For
the construction of the prolongation operator, two situations are
distinguished. If the material properties of the domains at both
sides of the boundary are about the same, the aforementioned
weighting for moved nodes is imposed:

(4)

If however, the curved boundary separates regions with a
large relative difference in permeability, e.g., iron and air,
the weighting formula would prolongate as if the new node
is created within one of both regions instead of upon the
boundary. Here, linear interpolation is more appropriate:

(5)

IV. PERIODIC BOUNDARY CONDITIONS

The geometries and the excitations of electrical devices are
often periodic in space. Hence, the computational domain can
be reduced to, e.g., half or one quarter of the device (Fig. 4). A
periodic boundary condition relates the potential values on two
boundaries and to each other:

(6)

The most common periodic boundary conditions are symmetry
( ; ) and anti-symmetry ( ; ). To retain
the symmetry of the system matrix, the degrees of freedom at the
slaveboundary are eliminated with respect to those at themaster
boundary according to (6). The prolongator has to incorporate
the connectivity of the periodic boundary conditions in the pro-
longation stencils for newly created nodes neighboring the slave
boundary nodes [Fig. 3(d)]. If periodic boundaries are applied to
model an open boundary transformation, e.g., the Kelvin trans-
formation, a more elaborated approach is required [18].

V. APPLICATION

The MG solver is applied to a model of a synchronous gener-
ator with six salient poles (Fig. 2). The gradient of the magnetic
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Fig. 5. Global error convergence of nested and nonnested mesh adaptation.

TABLE I
ITERATION COUNTS FORNESTED AND NON-NESTEDMG COMPARED TO

SYMMETRIC SUCCESSIVEOVERRELAXATION (SSOR)AND INCOMPLETE

CHOLESKY (IC) PRECONDITIONEDCONJUGATEGRADIENTS (CG)

Fig. 6. Worst aspect ratio of nested and nonnested nonuniform refinement.

flux density, serves as an error estimator. The total magnetic en-
ergy stored in the devices is applied as global error criterion. En-
hancing the mesh during adaptation improves the convergence
of the global error (Fig. 5). For this particular model, 0.5% accu-
racy is attained with 10degrees of freedom applying nonnested
grids instead of 2.10for the nested ones. This fact motivates the
use of mesh enhancement in electromagnetic simulation.

The MG, applied to nonuniformly refined, nonnested meshes
as proposed here, requires much less cycles to converge when
compared to nested MG (Table I). Non-uniform refinement
without mesh enhancement, creates a nested hierarchy of grids.
The worst aspect ratio’s of the elements, however, increase
(Fig. 6). They are responsible for a considerable increase of
the spectral radius of the iteration matrices corresponding to
the Gauss–Seidel smoothers at the fine meshes. Hence, the
smoothing properties deteriorate and the optimal convergence
of MG is lost. The quality improvement of the mesh, thanks to
moving nodes and swapping edges, retains acceptable angles
in the mesh and thus the good smoothing properties and a
constant number of MG cycles at each level of adaptation.

In the case of nonnested MG, the prolongation operator is
much more expensive. This does, however, not harm the perfor-
mance of nonnested MG. Timings are compared in Fig. 7 and
clearly indicate the benefits of nonnested MG over nested MG
and the preconditioned Conjugate Gradient iterative method. As
an indication, the slope corresponding to optimal complexity is
added to Fig. 7.

Fig. 7. Cumulative timings of nested and nonnested MG compared to
SSORCG and ICCG.

VI. CONCLUSIONS

The application of multigrid to a nonnested hierarchy of un-
structured meshes requires particular adjustments of the prolon-
gation operator according to moved nodes, restoration of the
original geometry at curved boundaries and periodic boundary
conditions. The decrease of the aspect ratio’s of the finite ele-
ments peculiar to nonuniform refinement, causes a deteriorating
convergence of MG. The nonnested full MG scheme overcomes
this by mesh enhancement and combines a better convergence
of the global error to faster iterative solutions of the linear sys-
tems when compared to nested MG.
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