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Full Multigrid for Magnetostatics Using Unstructured
and Non-Nested Meshes

Herbert De Gersem and Kay Hameyer

Abstract—Adaptive mesh refinement and mesh enhancing applying first order linear triangular finite elemem& (x, ¥).
techniques, commonly applied in electromagnetic finite element The system matrix i¥&x = f where
simulation, give raise to a hierarchy of nonnested unstructured

grids. The application of geometrical multigrid is not straight-

forward. The prolongation operator is adapted to the particular kij = / VVN; - VN; d,
properties of the mesh refinement. Anti-symmetric boundary 4

conditions and nonlinear material characteristics are incorpo- fi= / J.N;dQY and z; = A,;.
rated. The numerical experiment performed on the model of a Q

synchronous machine shows optimal convergence for the proposed
multigrid scheme whereas the convergence of classical nested
multigrid becomes troublesome. Il. MULTIGRID

Index Terms—Adaptive mesh refinement, finite element A. Multigrid in Electromagnetic Simulation

methods, iterative solvers, multigrid methods. MG methods became a standard solution method in many

application areas [1]. MG approaches entered the field of qua-
|. INTRODUCTION sistatic magnetic simulation a few years ago [2], [3]. Nowadays,
research in the field is focused toward the development and

INITE element simulation has found its way to the design’~ .~ . .
L : ipplication of algebraic MG schemes [4]-[6] and MG for 3-D
and optimization of electrical apparatus. Unstructured 7 I—curl operator [7], [8]. Geometrical MG is fully mature

nite element meshes allow an accurate description of the rat g . : .
arbitrary geometries. A prescribed accuracy is achieved solve .the Poisson equation arising from .2'D and 3-D nodal
adaptive mesh refinement based on error estimation, detecti |:r1ulat|qns for elgctro— and magnetostgtlcs. Unfortunately,
e.g., regions with ferromagnetic saturation. inly uniformly refined meshes are considered [9]. Local, but

Unstructured meshes and nonuniform mesh refinement g%sted, refinement is_cons_idered by a hierarchical MG meth_od
commonly used in electromagnetic simulation but cause ad 10]. Here, the MG idea is extended to nonnested hierarchies

vere restriction to the application of conventional geometricg locally refined meshes [11]. This research is motivated by the

multigrid (MG) techniques, originally developed for uniformly act that nonuniform refinement, combined to mesh enhancing

refined, structured meshes. This paper deals with MG adjusfgghnlques, yielding nonnested grids, is particular advantageous

to arbitrarily refined meshes. In particular, the prolongation o%_nd th'erefore commpnly gpphed to glectromggneﬂc S|mulat|on,
erator within the MG cycle is adapted to the nonnested hierarc aturing _Iarge relative dlffe_rences in material properties and
of meshes that naturally arise when mesh quality improvemé%faI nonlinear ferromagnetic phenomena.

techniques are applied. B. Multigrid Method

The theory is developed using 2-D magnetostatic models. The ] ) ) )
partial differential equation-V - (VVA.) = J., with A. and Linear iterative solvers are very effective to wipe out so called

J. the z-components of the magnetic vector potential and tthigh frequent errors, i.e., errors occurring at small scales in the
current density respectively, ancthe reluctivity, is discretized Mesh [12]. Unfortunately, the long range errors decay only after
a considerable number of iteration steps. The basic idea of MG
consists of restricting the error to a coarser grid on which it ap-
pears again as a high frequent error and is therefore easily elimi-
nated by an iterative solver on the coarser grid. A MG scheme is
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Csh (c) nested refined mesh and (d) mesh refined with aspect ratio enhancement of

a one-pole synchronous machine model; (e) nonuniform mesh refinement.

Fig. 1. One multigrid cycle.

the components vanish by a few smoothing steps, has to be

a coarser grid with characteristic mesh siZzesolving the de- prov@ed. Convergence prpofs and estimates _rel_y upon the
inclusion of the coarser finite element spaces within the finer

fect equationKydy = ey, with Ky the system matrix de- . . .
fined on the coarser grid, and prolongatig up to the defect ones. In that case, weak forms of the partial differential equa-

d;, on the finer grid. Finally, the defect is added to the iteramH,On can be m_hented Lrorlngor:e tshpace to ﬂ;e other ?ndd OP(;'TEI
x, = X5, + d;, and a few post-smoothing steps are appliegf)nvergencel IS prove E d]. r:jthe case ornonnes e“?n t el
yielding the new iteranckﬁj*l. spaces are also nonnested and the convergence proof has to rely

The particular MG cycle, used here, consists of ongPon regularity conditions to which the applied MG cycle has

Gauss-Seidel pre-smoothing step, the restriction defined t&})e tuned [13]
the adjoint of the prolongation, the coarse grid correction, the
prolongation and 1 Gauss—Seidel post-smoothing step. If the
concept is applied recursively, a hierarchy of finite element Relevant electromagnetic models usually require unstruc-
(FE) meshes is required. A V- or W-cycle correspond to ongred meshes to resolve for all geometrical details [Fig. 2(a)].
or two MG cycles respectively, performed on each level [120 achieve a prescribed accuracy, adaptive mesh refinement
Here, V-cycles are used. On the coarsest level, the systensigipplied. Ana-posteriorierror estimator applied to an inter-
solved exactly by an LU-decomposition. A full MG method isnediate solution [Fig. 2(b)], indicates the elements with large
achieved if the coarser levels serve also to determine an initﬂﬁbgnetic fields, large energies, large gradients or high levels
estimate for the MG solver at the finer discretizations [12].  of saturation. Only the fraction of elements with the highest
errors, is marked for refinement. Edges in between marked ele-
C. Non-Linear Multigrid ments are refined, causing nonuniform refinement [Fig. 2(e)].

If ferromagnetic saturation is considered, a Newton—Raphsbign-uniform mesh refinement, however, tends to worsen the
linearization is invoked. Due to the changes in the system $#apes of the finite elements [Fig. 2(c)]. Large angles are to be
be solved at each Newton step, a slightly different approaché¥oided from the numerical point of view [14], [15]. Therefore,
required. The most recently obtained nonlinear information, th@ality enhancement for the mesh is appropriate. Since adaptive
is gathered in the Jacobian, is transferred to the coarser griddgsh refinement is inevitably nonuniform and because of the

the Galerkin approach. The Jacobian on a coarser gridis ~ Use of unstructured grids itself, the prolongation operator is
much more complicated when compared to the one between

Jg =P;J,.Py, (1) structured and uniformly refined meshes. Moreover, because
of additional mesh enhancement, two successive meshes are
with J,, the Jacobian on the grid all, the coarse-to-fine grid not longer nested [Fig. 2(d)]. The MG scheme has to deal
prolongation operator. The MG cycle remains essentially uwdth restriction and prolongation operators between nonnested
changed. The increased computational work during set-upnieshes.
negligible with respect to the cycling time itself.

I1l. N ON-UNIFORM MESH REFINEMENT

A. Edge Swapping

D. Convergence of Multigrid To avoid large angles within the mesh, the Delaunay property
The convergence properties of MG depend on the progsrapproximately imposed. The Cline and Renka test is applied
blend of smoothing and coarse grid correction. For eath all edges whether swapping them would decrease the aspect

bandwidth of error components, an appropriate grid on whichtio [16] [Fig. 3(a)]. A Delaunay triangular would be achieved
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C. Restoring the Original Geometry

’ i J While refining the mesh, nodes are redirected in order to re-
o 4, = 4N, Gey)+ store the original geometry at curved boundaries [Fig. 3(c)]. For
d <:> = AN, (e, p )+ the construction of the prolongation operator, two situations are

distinguished. If the material properties of the domains at both
sides of the boundary are about the same, the aforementioned

Fig. 3. Adjustments of the prolongation operator according to (a) swappingeighting for moved nodes is imposed:
edges; (b) moving nodes; (c) restoring the original geometry; (d) periodic
boundary conditions.

a)

Ap = Z AiNi(zp, Yp)- (4)
if this procedure is repeated until all edges fulfill the test. Pro- =

ceeding until the number of swapped edges is only a fractifnhowever, the curved boundary separates regions with a
of the number of edges, already yields a considerable improl@ge relative difference in permeability, e.g., iron and air,
ment of the mesh quality [16]. Because of the nodal formulatidfe Weighting formula would prolongate as if the new node
applied here, swapping edges does not affect the restriction &hdreated within one of both regions instead of upon the

prolongation operators. boundary. Here, linear interpolation is more appropriate:
A + Aj
B. Moving Nodes 4= 2 ®)

To attain a smooth transition from areas with tiny elements
to roughly discretized ones, interior nodes of the mesh are V. PERIODIC BOUNDARY CONDITIONS
moved to the centers of the control volumes formed by their . o . .
surrounding elements [Fig. 3(b)]. This is done by passi%ghe geometries and the excitations of electrical devices are

through the list of nodes until less than a certain percenta en periodic in space. Hence, the computatlonal dO”_‘a'” can
of nodes have to be moved. The prolongation is affected reduced to, e.g., half or one quarter of the device (Fig. 4). A

this procedure. The common prolongation defined by Iinegg”oglc _b(;;Jnda;chotndltlor;]retlﬁte§ the potential values on wo
interpolation between two nodes, oundaries; andlz o each other:

Alr, + aAlp, = 8. (6)
Aj + Ay
Ap = 9 (@) The most common periodic boundary conditions are symmetry
(o« = —1; B = 0) and anti-symmetry«{ = 1; 5 = 0). To retain
is not longer valid. Instead, a defect computed on a coarser gifié symmetry of the system matrix, the degrees of freedom at the
is prolongated to a finer grid by a projection applying the shaggaveboundary are eliminated with respect to those anthster
functions to obtain the value at interior nodes [17]: boundary according to (6). The prolongator has to incorporate
the connectivity of the periodic boundary conditions in the pro-

n longation stencils for newly created nodes neighboring the slave
Ay =" ANi(ap, yp)- (3)  boundary nodes [Fig. 3(d)]. If periodic boundaries are applied to
i=1 model an open boundary transformation, e.g., the Kelvin trans-

To avoid searching in the mesh during the MG cycles, the prlzgrmation, amore elaborated approach is required [18).

longation operator is constructed during the set-up phase. To
reduce the cost of the prolongation operator, only dependencies
beyond a certain threshold, e.@;(x,, y,) > 0.01, are ad-  The MG solver is applied to a model of a synchronous gener-
mitted to the prolongation stencils. ator with six salient poles (Fig. 2). The gradient of the magnetic

V. APPLICATION
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Fig. 7. Cumulative timings of nested and nonnested MG compared to
SSORCG and ICCG.

VI. CONCLUSIONS

The application of multigrid to a nonnested hierarchy of un-
structured meshes requires particular adjustments of the prolon-
gation operator according to moved nodes, restoration of the
original geometry at curved boundaries and periodic boundary
conditions. The decrease of the aspect ratio’s of the finite ele-
ments peculiar to nonuniform refinement, causes a deteriorating
convergence of MG. The nonnested full MG scheme overcomes
this by mesh enhancement and combines a better convergence
of the global error to faster iterative solutions of the linear sys-

Fig. 6. Worst aspect ratio of nested and nonnested nonuniform refinement[emS when compared to nested MG

flux density, serves as an error estimator. The total magnetic en-

ergy stored in the devices is applied as global error criterion. En-
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