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Abstract

The torques of a magnetic brake and a solid rotor induction machine, fed by
sinusoidal voltage sources, are simulated by a motional finite element method.
Oscillatory solutions occurring for motional models with elevated velocities, are
prevented by adaptive mesh refinement relying upon intermediate solutions
stabilised by upwinded finite element test functions. A relaxed successive
approximation deals with the non-linear material properties. The connections of
the conductors and windings within the finite element model to external loads,
impedances and supplies are represented by an electric circuit and added to the
system of equations. The technical examples indicate the advantages of the
motional formulation.

1. Introduction

A conductive material moving in a magnetic field experiences eddy currents [1].
For increasing speeds, the eddy currents are pushed towards the surface of the
conductive material in the downwind direction, i.e. the direction of the velocity.
The reverse direction is called the upwind direction. The currents generate forces
and Joule losses. There are numerous applications of motional eddy currents, e.g.
induction machines, magnetic brakes [2], magnetic levitation or suspension
devices and non-destructive testing tools [3]. The accurate simulation of motional
effects, however, is still challenging. Transient finite element simulation is a
common practice, but suffers from excessive computation times, especially for



models with complicated geometries and models experiencing small skin depths,
which both require fine meshes. Two alternatives are possible but are based on
specific assumptions. If the magnetic field at the interface between the moving
bodies features a particular regularity, the motional effects can be simulated by a
non-motional formulation relying upon the slip transformation technique [4].
This approach is applicable to three-phase induction machines. For models with
uniformly moving parts, such as solid rotor induction machines and
electromagnetic rail braking systems, the motional eddy currents can be
accounted for by an additional, motional term in the partial differential equation
[5]. For the steady-state simulation of these devices, a motional formulation is
preferred over a transient one because time stepping, which is expensive for large
models, is avoided. In this paper, the motional formulation is equipped with an
adaptive mesh refinement strategy, an upwinding technique, a relaxed non-linear
loop and an external circuit coupling mechanism, which are required to apply the
formulation to technical models.

2. Motional finite element formulation

A rigid body is said to be uniform with respect to its movement if the movement
does not change the configuration of the model. This requires the moving bodies
to be infinitely long in the direction of the motion and to have a constant cross-
section perpendicular to the velocity vector. In the case of translation, the moving
body corresponds to an arbitrary cross-section extruded along the direction of the
motion. Examples are rail braking systems for high speed trains [5] and linear
induction motors with a solid translators [6]. In the case of rotational movement,
the moving body consists of concentric tubes. This is true for the rotational
magnetic brake and the solid rotor induction machine considered as examples
here.
The formulation for the steady-state simulation of motional eddy currents in
uniformly moving bodies, is derived by introducing the magnetic vector potential
A  and the electric voltage V  into the Maxwell equations. Because the
excitations are sinusoidal in time, it is convenient to represent all field quantities
by the phasors A  and V :

{ }tje ω= AA Re  ; (1)

{ }tjeVV ω= Re (2)

with ω  the electric pulsation. The laws of Ampère and Faraday-Lenz are
combined yielding one single partial differential equation

( ) Vj ∇σ−=ωσ+×∇×σ+×∇ν×∇ AAuA (3)

with u  the velocity, ν  the reluctivity and σ  the conductivity.



The devices considered here, are simulated by 2D, cartesian models. The cross-
section of a device by the ),( yx -plane is denoted by Ω . The electric excitation

is perpendicular to Ω . Therefore, the magnetic vector potential has only a z -
component, i.e. ),0,0( zA=A . The cross-sections of the devices are triangulated.

Linear finite elements ),( yxN j  are associated with the vertices nj ,...,1=  of the

finite element mesh. The finite element solution for zA  is a linear combination

of ),( yxN j  with the corresponding coefficients jzA ,  solved from

[ ] [ ] [ ]
ijzijijij fAlmk =++ , (4)

where

∫
Ω

Ω










∂

∂

∂
∂

+
∂

∂

∂
∂

ν= d
y

N

y

N

x

N

x

N
k

jiji
ij ; (5)

∫
Ω

Ω










∂

∂
+

∂

∂
σ= d

x i
j

y
j

xij N
y

N
v

N
vm ; (6)

∫
Ω

Ωωσ= djiij NNjl ; (7)

∫
Ω

Ω∇σ−= dii
NVf . (8)

The system matrix is sparse, but because of the presence of ijm , not symmetric.

The system is solved by preconditioned Krylov subspace solvers such as e.g. Bi-
Conjugate Gradients Stabilised and Generalised Minimal Residual with a
Successive Over-Relaxation preconditioner [7].

3. Upwinding combined with adaptive mesh refinement

The governing partial differential equation (3) is a convection-diffusion equation.
For this type of equations, it is known that the finite element solution is
numerically unstable, i.e. may contain spurious oscillations, if the convection is
dominant over the diffusion [8] (Fig. 1a). A sufficient but not strictly necessary
condition for numerical stability is
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u
(9)

where Pe  is called the Péclet number according to the characteristic mesh size
h  of the finite element discretisation.



(a) (b)  (c) 

Figure 1: (a) Finite element solution of a convection dominated problem; (b)
non-uniformly refined mesh achieved by the combined upwinding,
adaptive mesh refinement approach and (c) detail of a magnetic flux
lines on the refined mesh (the ellips indicates a transition layer of the
magnetic field).

Equation (9) already indicates two possible techniques to cure the numerical
problem: decreasing the mesh size and/or decreasing the ratio νσu . The first

approach may lead to unacceptably large models. The second approach changes
the original differential problem. Here, a combination of both techniques is
proposed [9]. The reluctivity is artificially augmented by the additional
reluctivity addν , yielding the artificial diffusion coefficient addart ν+ν=ν .

addν  is chosen such that 12 <νσ arthu , which ensures a non-oscillatory

solution even on a coarse mesh. The artificial diffusion approach is equivalent to
a particular way of stabilising the finite element method by applying upwinded
test functions, i.e. test functions getting more weight in the upwind direction [8].
Although the finite element solution obtained by upwinding is too diffusive, it
indicates the places where large eddy currents, and hence, steep transitions of the
magnetic vector potential, occur. This enables an error estimator to mark the
corresponding elements for refinement. An error estimator applied to the
oscillating solution of Fig. 1a would pass a non-reliable advise to the refinement
algorithm. At the transition layers the mesh size decreases and as a consequence,
the need for upwinding vanishes. The parts of the moving conductors far away
from the downwind boundary feature an almost constant magnetic vector
potential and are not refined by the algorithm. They are excluded for upwinding
when the transition layers at the downwind boundaries are sufficiently localised.
This particular combination of adaptive mesh refinement and upwinding yields
accurate solutions on relatively small finite element meshes. The strategy results
in non-uniform mesh refinement, which is advantageous for technical models
commonly featuring complicated geometries and local motional eddy current
effects (Fig. 1b and Fig. 1c).



4. Field-circuit coupling

The stator coils are connected to a voltage supply and to lumped parameters that
model the resistances and inductances of the end windings. The currents through
the rotor parts are forced to zero. The additional equations modelling these
external circuit couplings, are added to the finite element system:
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zl  is the model length. pΩ  and aΩ  are the parts of Ω  corresponding to the

stranded conductor p  and the solid conductor a  respectively. qN  and qS  are

the number of turns and the cross-section of the stranded conductor q . pqr  is the

resistance matrix associated with the stranded conductors and the circuit
components put in series to them. abg  is the admittance matrix associated with

the solid conductors and the circuit components put in parallel to them. pv  are

the voltages of the sources exciting the stranded conductors. qi  is the current

through stranded conductor q . bv  is the voltage drop along solid conductor b .

A more general treatment embedding the solid and stranded conductors in an
arbitrary circuit is presented in [10].



5. Non-linear loop with underrelaxation

Ferromagnetic materials offer high permeabilities and are therefore commonly
applied in technical devices. Ferromagnetic saturation has a large influence on
the device behaviour and hence, has to be faced in the simulation. At elevated
speeds, large magnetic flux densities occur at the downwind boundaries which
gives rise to substantial saturation and additional leakage flux. For time-harmonic
simulation, an effective saturation characteristic is used [11]. The non-linear
material characteristic can be introduce in the simulation by the Newton-Raphson
technique [12] and the successive approximation method. Here, the second
approach is chosen. The reluctivity ν  in (5) is adjusted between successive
solutions of linearised systems as in (10). A superscript )(m  indicates the non-

linear iteration step. The local occurrence of highly saturated material causes a

poor convergence of the non-linear loop. An underrelaxation factor 1)( <α m  is
applied to the successive solutions:
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the solution of (10) with the reluctivities )(mν . )(mα  is adaptively chosen out of

the set 
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where )1( +m
ijk  is built by substituting the reluctivities )1( +ν m  in (5).

6. Rotational magnetic brake

A rotational magnetic brake consists of a stator yoke with four poles and a solid
iron rotor (Fig. 2a). The stator windings excite a four-pole DC air gap magnetic
field. The rotor is a conductive solid iron cylinder. The magnetic properties of



the iron are highly non-linear. The pole shoes are designed to spread the
magnetic flux over a large area on the surface of the conductive, soft iron
cylinder. The symmetry of the geometry and the excitation enables the
application of a reduced 2D model considering one pole pitch with periodic
boundary conditions (Fig. 2b).
For large excitation currents, the saturation of the rotor iron causes some leakage
flux between the stator poles. As the speed increases (from left to right in Fig. 3),
the magnetic flux lines are pushed towards the surface of the solid iron rotor.
Because of ferromagnetic saturation, it is not possible to build up a dense flux
pattern. As a consequence, the flux in a ferromagnetic brake is more distributed
towards the rotor inside and the air gap than for the case of a similar, but non-
ferromagnetic brake.
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    (b)

Figure 2: (a) Cross-section of a rotational magnetic brake and (b) initial finite
element mesh.

(a)    (b)    (c)

Figure 3: Rotational magnetic brake: computed magnetic flux lines for the
magnetic brake with the rotor rotating at (a) 1 rad/s, (b) 10 rad/s and
(c) 100 rad/s.



0 10 20 30 40 50 60 70
0

50

100

150

200

250

Angular velocity (rad/s)

Torque (Nm)
Non-linear model

Equivalent linear model

Figure 4: Speed-torque characteristic of the rotational magnetic brake.

The torque generated by the brake depends on the rate of flux coupled between
the stator and the rotor. The torque is computed by an improved Maxwell stress
tensor method [13]. The torque is substantially influenced by the saturation. The
ferromagnetic saturation is responsable for a larger torque compared to a brake
with an equivalent, but linear magnetisation characteristic (Fig. 4). This technical
example shows the importance of non-linear simulation and sufficiently small
meshes at the skin layer of moving bodies.

7. Solid-rotor single-phase induction machine

The second example is the solid-rotor single-phase induction machine proposed
as the Testing Electromagnetic Analysis Methods (TEAM) Workshop problem
#30 [14],[15]. The solid rotor consists of an iron core covered by an aluminum
layer (Fig. 5a). The stator contains a single-phase winding and an iron yoke. The
winding is not embedded in slots to enable a comparison with the analytical
solution derived in [15]. In this example, all material characteristics are linear.
Because of the uniformity of the rotor, transient simulation can be avoided by
applying the formulation proposed in this paper. The alternating field excited by
the single-phase winding is extreme at a certain time instant 0t  (Fig. 5b). At 1t , a

quarter of a period later, the observed flux is the reaction field of the aluminum
rotor part (Fig. 5c). The latter is, however, considerably smaller than the former.
The motional formulation is applied for different velocities to compute the speed-
torque characteristic of the device (Fig. 6). The results match the anlytically
determined values.
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Figure 5: Solid-rotor single-phase induction machine: (a) geometry, (b)
magnetic flux lines at 0t  and (c) magnetic flux lines at 1t .
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Figure 6: Speed-torque characteristic of the solid-rotor induction machine (the
crosses indicate the analytical solution of [15]).

8. Conclusions

For devices featuring uniformly moving bodies, the steady-state simulation of
motional eddy currents is based on a motional, time-harmonic formulation.
Adaptive mesh refinement combined with an upwinding technique overcomes the
numerical problems typical for motional partial differential equations. An
external electric circuit coupling and a non-linear iteration loop join the
formulation and enable its application to technical devices. The method is
successfully applied to a magnetic brake with a ferromagnetic rotor and a solid-
rotor single-phase induction machine.
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