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Abstract-- A new approach to represent the local change of
material properties or source terms due to their non-linear
characteristics is presented here.  The material function is given
in terms of simple basis functions, allowing a higher order
representation within the area covered by the finite element.  This
approximation as a higher order material space has advantages
for the treatment of saturable ferromagnetic materials and
temperature dependencies of conductive and permanent magnetic
materials.  It is possible to treat the material function space and
the field solution as a coupled problem.

Index Terms-- electro-thermal effects, ferromagnetic materials,
finite element method, nonlinear differential equations

I. INTRODUCTION

ANY partial differential equations describing
electromagnetic or other physical fields often contain

non-linear dependencies of the source term or material
constants.  These non-linearly dependent coefficients are
usually scaled material characteristics, such as saturable
ferromagnetic reluctivities or temperature dependent
parameters, such as electric conductivities or permanent
magnet material data.  In the latter, the magnetic field equation
can be a part of a larger electromagnetic-thermal coupled
problem.

The non-linearities have to be treated very carefully, as the
non-linear solution cannot be found sufficiently correct if these
parameters are not accurately approximated.  The other way
around, the non-linearities cannot be determined if the solution
is not achieved accurately because it depends on them and vice
versa.

Non-linear dependencies can be considered in numerical
field computation models, such as the finite element method
(FEM), but this has to be done with care, especially in case of
coupled problems, where multiple solution algorithms are
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involved.

II. NON-LINEAR COEFFICIENT TREATMENT

A. Accuracy Issues
A general non-linear partial differential equations, with

generic coefficients α, β, λ and f, for a field x, which could be
an electrical, magnetic or thermal field, has the form:
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The FEM computes the solution of (1) as an approximation
using polynomial base functions Nk:
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The approximation error can be expressed as a function of
an element size parameter h and the used polynomial order m
[1]-[3]:

( )( )1++= mhOxx . (3)

In the derivation of the algebraic FEM equations, integral
expressions containing possibly dependent coefficients and a
shape function expression are to be computed.  For example,
for the absorption term in (1), when the Galerkin method is
used, this integral is:
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ee
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In the FEM, it is often assumed that the non-linear
parameter β can be approximated as constant within the
element’s domain.  Mathematically, this is identical to using
zero-order elements to discretize the material or coefficient
field:

( )hO+= ββ (5)
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The resulting accuracy for this term is:

( ) ( )( ) ...1 +++= +m
i hOhOxxx βββ (6)

Therefore, the error of the product is of order one, no matter
how high the polynomial order m of the element is.

It can be proved that the non-linear materials should be
represented with an order of at least m-1 to maintain a similar
approximation accuracy for (6) as in (3).

Similar considerations can be made regarding the other
products in the diffusion, transient, convection and the force
term of (1).

B. Complete Numerical Integration
It is theoretically possible to compute the integral (4) in a

numerical way, for example by using Gauss points, with the
non-linear coefficient included.  In that case, it has to be
evaluated at certain locations in the mesh.  The order of the
integration method has to be sufficient to obtain the required
accuracy.

This approach may be complicated in the case of particular
coupled problem calculations.  Complicated large coupled
problems are often computed as sequential procedures (e.g.
[4]).  Then, the field computations, for instance the magnetic
and thermal field and the intermediate evaluations to determine
the interactions (loss calculations and material parameter
corrections) are executed in successive steps.  Often, these
subroutines use black-box solvers.

The practical implementation of a numerical integration
method may then pose problems as the evaluation of the non-
linearities requires the interpolation of the associated solution.
Hence, the associated dicretisations and the subfield solutions
have to be accessible at the same time.

III. MATERIAL SPACES APPROACH

A. General derivation
Alternatively, the coefficients/materials can be represented

with a higher (non-zero) order polynomial approximation,
which is calculated separately from the procedure for the field
computation.

Hence, an entire finite element representation for the
coefficients in (1) is constructed.  For the previously used
absorption coefficient, this is:
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The functions Nk
β with the order of mβ can be of the same

form as the finite element shape functions used in the actual
FEM field solution.  In the case of anisotropic materials
represented by the coefficients, (7) can be extended.  A finite
element representation can be used for every material tensor
entry.

If the approach (7) is used, the entire integral (4) becomes

more complicated (one factor more in the products involving
an additional shape functions expression), but it can still be
calculated analytically.  For example, assume first order
triangular elements are used for both the field and material
space representation:

( ) ( )ycxbayxN kkk
e

k ++
Ω

=
2

1, , (8)

with ak, bk, ck a function of the element nodes’ coordinates
and Ωe, the element’s size [2]-[3].  Then, the matrix building
block for the absorption term becomes:























++++++

++++++

++++++

Ω

3
21321321

3213
2

1321

32132132
1

33336363

33633633

36363333

10
βββββββββ

βββββββββ

βββββββββ

e . (9)

Similar element matrices can be derived for:
•  the diffusion term with an anisotropic coefficient:
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•  the convection term:
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•  the force term:
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These matrix building blocks are symmetric (except for the
convection term matrix).

It can be noticed that in this higher order material
representation, the coefficients/materials have a similar
representation, and equal ‘status’, as the field solution.  The
materials are represented in true ‘material (vector) spaces’.
Hence, the notion ‘coupled physical fields’ needs to be
extended to ‘coupled physical and material fields’.  The
determination of the weights in (7) has to be considered as a
subproblem of the enlarged coupled problem at the same level
as the involved physical fields.
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The optimal combination of the polynomial orders of the
solution and material approximation for a given field equation
can be determined using expressions such as (6) for every
term, taking into account that differentiation lowers the order
by one.

B. Determination of the Material Space Coefficients
To assess the non-linearity in the iterative solution

algorithm, whether it is due to a problem-own or a coupled
problem dependency, several methods are possible:

1) Interpolation
The non-linearities are assessed using the field solutions.

This is an explicit operation.

( )( )kkk yxx ,ββ = (13)

2) Least-squares method or Galerkin approach
The quadratic error between the material field and its

polynomial approximation is minimized:
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yielding:
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This equation is the same as would be obtained using a
weighted residual approach with the Galerkin choice for the
weighting functions.

This approach requires a (sparse) system solution.  The size
of this system depends on the number of elements containing
non-linear materials.

IV. APPLICATION: COUPLED ELECTROMAGNETIC-THERMAL
PROBLEMS

A. Coupled Problem Computation
As an example, the practical implementation of this

approach for a magnetic field computation is discussed.  The
2D transient magnetic field modeled by means of the magnetic
vector potential A [2], is described by:

( )( ) ( ) ( ) ( ) ( )TAMAVT
t
ATAA s ,∇−∆−=

∂
∂−∇⋅∇ υσσυ , (16)

and in the frequency domain using the time-harmonic
method (in the frequency domain, the static magnetization M is
omitted):

( )( ) ( ) ( ) sVTAjTAA ∆−=−∇⋅∇ σωσυ . (17)

The involved non-linear material coefficients are:
•  ferromagnetic materials (which have to be modeled as

dependent on the temperature at higher temperatures);
•  electrical conductivities that depend on the temperature;
•  permanent magnet characteristics that depend on the

temperature and the magnetic field.
These are approximated as:
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The thermal field equation is:

( )( ) ( ) ( )ATq
t
TTcTT Joule ,−=

∂
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Here, the Joule loss is a function of both fields, as it
contains the temperature dependent resistivity and the
magnetic field invoking eddy currents:
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The non-linear thermal coefficients, including the loss
density, are approximated in a similar way as in (18)-(20).

The calculation of this large coupled problem is performed
using a block Gauss-Seidel approach [5] outlined in Fig. 1.  A
steady-state problem consists of one iteration loop; in the case
of a transient problem, an extra time loop is added.

start

compute
magnetic field

compute
losses

compute
thermal field

adjust
material data

stop

cont. ?

Fig. 1.  Flowchart of a coupled electromagnetic-thermal computation using
a block Gauss-Seidel method.

B. Simulation of Conductive Heating
To compare with results using higher-order approximations,

the steady-state coupled electromagnetic-thermal solution of a
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busbar is computed using the traditional FEM methodology
with zero-order material coefficients.

The problem consists of a rectangular conductor with skin
effect.  It is cooled by means of natural air convection, which
explains the necessity to use different meshes as the air region
only needs to be meshed for the magnetic field computation.
The field solutions are plotted in Fig. 2.

magnetic field thermal field
Fig. 2.  Magnetic and thermal field solution.

The obtained zero- and first-order loss distributions are
shown in Fig. 3 and Fig. 4.  The continuous character of the
first order distribution obviously gives a better detail in the
skin effect region, which leads to a better calculation of the hot
spot temperature present on that location.

Fig. 3.  Loss distribution in W/m2 using zero-order approximation.

Fig. 4.  Loss distribution in W/m2 using first-order approximation.

The evolution of the relative 2-norm convergence criterion
is compared in Fig. 5.  The methodology using the higher-
order coefficient approximations converges faster than the
zero-order approaches, even after refinement of the mesh.

Furthermore, this methodology has an incremental change in
computation time to solve an individual magnetic and thermal
subproblems.
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Fig. 5.  Convergence criterion evolution for different approaches.

V. CONCLUSION

The requirement of employing accurate approximations for
non-linear material coefficients, for instance featuring as a
dependent material parameter, is demonstrated for a general
field equation.  An alternative to approximating the material
coefficient to be constant within the element, implementing
higher-order ‘material spaces’ is outlined here.  It uses finite
element approximations for the non-linear parameters.  The
extended building blocks for the finite-element field equations
are derived.  Non-linear updating procedures, explicit
interpolation and a least-squares fitting, are discussed.

The implementation and advantages of this approach in a
coupled electromagnetic-thermal problem are illustrated.
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