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Abstract. The presence of materials with a relative large difference in permeability has a harmful 
influence on the convergence of Krylov subspace iterative solvers. Some slow converging 
components are not cured by preconditioning and correspond to eigenvectors reflecting the domains 
with relatively low permeable material. Approximations for those eigenvectors are determined using 
physical knowledge of the problem. The iterative solution process is split up in a small problem 
counting for the separated eigenmodes and a full-size problem out of which the slow converging 
modes are removed. This deflated preconditioned solver is faster converging compared to more 
common approaches, such as the Incomplete Cholesky Conjugate Gradient method. 
 
Résumé. La présence de matériaux dont les perméabilités sont très différents a une influence néfaste 
sur la convergence des solveurs itératifs de Krylov. Le préconditionnement ne peut pas améliorer la 
convergence de certains éléments, dont les vecteurs propres correspondent aux domaines où les 
matériaux présentent une faible perméabilité. Des approximations pour ces vecteurs propres sont 
réalisées sur base des caractéristiques physiques du problème. La procédure itérative de résolution est 
séparée en un problème réduit pour les modes propres de faible convergence, et un modèle complet 
dont ces mêmes modes sont retirés. Cette méthode converge plus rapidement que les approches 
conventionnelles, comme la méthode Incomplete Cholesky Conjugate Gradient. 
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1 Introduction 

The finite element (FE) procedure translates the 
continuous field problem into a discrete one represented 
by a linear system of equations. The solution of the system 
is usually responsible for the largest part of the simulation 
time. The simulation of huge models or the application of 
FE models within iterative design procedures and 
optimisation is sometimes prohibited by this fact. Recent 
research deals with the improvement of sparse matrix 
solvers applied to electromagnetic simulation [1,2]. Krylov 
subspace solvers are tuned for the particular properties of 
electromagnetics and multigrid approaches are considered. 
A large number of simulations however deals with 
relatively small models in the range of 104 degrees of 
freedom that are sequentially solved for little differences 
in supply, geometry or material parameters. Usually, a 
preconditioned Krylov subspace solver, such as e.g. the 
Incomplete Cholesky (IC) preconditioned Conjugate 

Gradient (CG) solver is invoked. This paper relates the 
convergence of CG to the physical properties of the 
model. The effect of preconditioning is studied. A 
significant convergence improvement is achieved by 
supplying the numerical counterpart of the global 
behaviour of the model to the iterative system solver. 

2 Convergence of CG 

A Krylov subspace solver extends the base 
[ ]kvvv L21  of the Krylov subspace 

( ) { }0
1

000 ,,,span, rAArrAr −= k
kK L , (1) 

related to the system of  linear equations Axn b=  and 
the initial residu , with one new base vector  at 
each iteration step. A new iterand  is searched for 
within the Krylov subspace. Assuming exact arithmetic, 
the exact solution is attained at n  steps at most. Though, it 
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is expected that an acceptable approximation for  is 
obtained at some k . In that case, searching for the 
new iterand corresponds to solving a small-size problem in 
the Krylov subspace of dimension . The procedure 
building the Krylov subspace only requires matrix-vector 
products and vector updates, making Krylov subspace 
solvers particularly attractive to solve the sparse systems 
arising from FE discretisations. 
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The 2D magnetostatic Poisson equation 
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with  the zA z -component of the magnetic vector 
potential,  the reluctivity and  the current density, 
discretised on the domain Ω  by finite elements , 
yields the sparse, symmetric and positive definite system 
of equations 

ν zJ

i

bAx =  (3) 
-2

-1

with 

∫
Ω

⋅∇ν= NiijA  (4) 

and 

∫
Ω

Ω= dNJ izib . (5) 

The quality of an approximation  for a given  
strongly depends upon the properties of the corresponding 
subspace . The construction of 

k

(r ,0kK ( )ArkK  
relying upon multiplication with , reveals that the 
convergence of Krylov subspace solvers is governed by 
the eigenvalues and eigenvectors of the system matrix. 

A

The spectrum of  is real and positive. The spectrum 
of the system matrix, corresponding to the model problem 
of Fig. 1, is plotted in Fig. 2a. The CG method is a Krylov 
subspace method that is naturally related to symmetric, 
positive definite systems. The convergence of CG applied 
to (3) is bound by 

k

k 
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0

The -norm is defined as A Appp T= . The 

condition number  is the ratio between the largest and 
the smallest eigenvalue [3]. The convergence of CG 
applied to the model problem is plotted in Fig. 3. The 
number of iterations and the condition number are 
collected in Table 1 and Table 2 respectively. 

 
Fig. 1. Magnetic flux plot of an inductor. 
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Fig. 2. Spectra of  (a), (b),  (c) and 

 (d). 
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Fig. 3. Convergence histories of CG, ICCG, exact deflated ICCG 
(DICCG), approximatively deflated ICCG (D*ICCG) and ICCG 
with an approximative starting solution (SICCG). 

 
Table 1. Number of iterations of CG, ICCG, exact deflated 

ICCG (DICCG), approximatively deflated ICCG (D*ICCG) and 
ICCG with an approximative starting solution (SICCG). 

number of 
unknowns 

CG ICCG DICCG D*ICCG SICCG 

117 92 22 9 11 18 
486 248 46 30 31 49 

ferromagnetic
iron

air gap 

a 

1λ 2λ



Eur. Phys. J. AP (2000) 

Table 2. Condition numbers of the system matrices applied to 
construct the Krylov subspace. 

 
number of 
unknowns 

117 486 

CG 2.83e+04 4.02e+04 
ICCG 5.37e+02 8.49e+02 

DICCG 3.35e+00 4.53e+00 
D*ICCG 3.37e+00 4.53e+00 
SICCG 5.37e+02 8.49e+02 

 

3 Preconditioning 

Better convergence is achieved by applying the Krylov 
subspace method to the system 

bMAxM 11 −− =  (7) 

with  an appropriate preconditioner [4]. A good 
preconditioner projects the spectrum of A to a spectrum of 

 with all eigenvalues in a narrow band around 1, 
diminishing  and thus increasing the convergence rate. 
The preconditioned CG algorithm solving 

M

AM 1−

κ
bAx =  with 

starting solution  and preconditioner M  is 0x
 
 
Algorithm 1. Preconditioned CG. 
 

00 Axbr −=  
11 =ρ− ;  00 =p

for  L,2,1=k
solve Mz  11 −− = kk r

1
T

11 −−− =ρ kkk zr  

211 −−− ρρ=β kkk  

111 −−− β+= kkkk pzp  

kk Apq =  

k
T
k

k
k

qp
1−ρ

=α  

kkkk pxx α+= −1  

kkkk qrr α−= −1  
stop if convergence 

end 
 

As a preconditioner, an Incomplete Cholesky (IC) 
factorisation is commonly used [5]. The spectrum of 

 is plotted in Fig. 2b. Preconditioning improves the 
convergence substantially (Fig. 3, Table 1). Two small 
eigenvalues,  and , are left after preconditioning. 
The iterative solver only reaches the solution when both 
eigenmodes are incorporated. The convergence history 
(Fig. 3) reveals that these eigenmodes are difficult to find. 

The presence of 

AM 1−

1λ 2λ

1λ  and  has a harmfull influence on 
the convergence of ICCG. A significant improvement 
consists of the removal of both eigenmodes out of the 
system. 

2λ

A1

2u

1u 2u

2 , u

4 Origin of the slowly converging eigenmodes 

To gain insight into the relation between the physical 
model and the system spectrum, an eigenvalue 
decomposition of M  is performed. The two 
eigenvectors corresponding to λ  and  are plotted in 
Fig. 4.  and  correspond to flux patterns that are 
expected from the physical point of view: they reveal the 
major behaviour of the flux because of the large 
permeability of the iron parts in the model (Fig. 5). As a 
consequence, the slow converging eigenmodes are related 
to the presence of large differences in permeability in the 
model. The two small eigenvalues appearing in the 
spectrum are related to the two existing degrees of 
freedom for the global magnetic flux in the iron parts of 
the model. 

−

1 2λ

1u

 

 

 

 
 
Fig. 4. Eigenvectors  and  of  corresponding to AM 1−

1λ  
and 2λ . 
 

  
 
Fig. 5. Flux patterns corresponding to u  and . 1 2u
 
 

5 Deflated ICCG 

The Krylov subspace incorporates the eigenmodes 
( )11, uλ  and ( )2λ  only after a considerable number 
of iteration steps. This is because u  and u  correspond 
to small eigenvalues and are as a consequence not 
favoured by the construction procedure for 

1 2

( )A1−Mr0 ,kK , relying upon multiplication with M . 
To overcome this effect, either the Krylov space can be 

A1−
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explicitly enriched by u  and u  or the eigenmodes 
related to  and  can be removed out of the linear 
system of equations [6]. The latter approach is proposed 
here. 
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Consider the partial eigenspace U  with as a base, the 
orthonormal set  associated with the 
eigenmodes  and . Define the operator 

[ 2u
( 22 , u1, u

)1
11 IP −−=  (8) 

0p

with .  is a projector ( P ) and 

commutates with A as P  [3].  projects all 
vectors  upon  with U  the space spanned by 

 and .  is a low dimensional matrix which 
inverse is computed in advance.  defines a 

decomposition of the -dimensional space  with 
respect to the -inner product, into two orthogonal spaces 

 and U : 

( )E T
1

x P

1E

A

1
2

1 P=

1P

1
nℜ

A =

1u

U

P

⊥=ℜ Un . (9) rr α−=

The solution x is split up in two components: 

PxIx +−= . (10) UEPxx +=

( xPI 1−  is the component of the solution contained in the 
low dimensional space U  spanned by . U ( xPI 1 )−  is 
computed by 

UEPI 11)( −− . (11) 

This component represents the participation of  and u  
to the solution of the model. The second component  
is perpendicular to U  in the -inner product. x  is solved 
from the deflated system 

1u 2
xP1

A

MPM TT
1

1− =  (12) 

obtained by projecting (7) upon U .  does not 
contain the eigenvectors u  and . As a consequence, 
applying CG to (12) is more efficient compared to (7) [7]. 

 and  are projected upon zeros in the spectrum of 

 (Fig. 2c), indicating the rank deficiency of the 
projected system. CG is still applicable if the 
righthandside is contained in the range of the singular 
system matrix, as is here [8]. In that case, the eigenmodes 

 and  do not participate in the Krylov 
process. However, the solution contains an unknown 
component in U , the null-space of . Therefore, 
the solution x has to be restricted properly to  [8]. The 
deflated algorithm is derived from the preconditioned CG 

algorithm by applying deflation by  to the matrix-
vector product and proper projection by P  after the 
iteration loop. 
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Algorithm 2. Preconditioned CG, deflated by 
projector . P
 

( )0
T

0 AxbPr −=  
11 =ρ− ; 0 =  

for L,2,1=k  
solve  11 −− = kk rMz

1
T

11 −−− =ρ kkk zr  

211 −−− ρρ=β kkk  

111 −−− β+= kkkk pzp  

kk ApPq T=  

k
T
k

k
k

qp
1−ρ

=α  

kkkk pxx α+= −1  

kkkk q−1  
stop if convergence 

end 
bUT1−

k  
 
The deflated version of the ICCG solver (DICCG) 
provides an extra gain of convergence (Fig. 3, Table 1, 
Table 2). The application of  introduces a few vector-
vector updates per iteration step. 

T
1P

6 Approximative eigenvectors 

The exact determination of the considered eigenvectors 
would cost more work than the solution of (7) itself. 
Section 4 indicates that approximations for these vectors 
can easily be obtained on a heuristic basis. Approximative 
eigenvectors [ ]21 wwW =  are constructed assuming 
the magnetic flux to be homogeneously distributed in the 
flux tubes formed by the high permeable iron parts and the 
air gaps of the model. The flux leakage in the coil and 
outside the iron core is neglected. The flux patterns are 
much alike those of Fig. 5. The projector using the 
approximative eigenvectors  and  is 1w w

( )T1
22 AWWEIP −−=  (13) 

with ( ) WAWE T
2 =

2P
x

1w 2w

 [7]. Also  is a projector 

( ) and commutates with A ( P ).  
projects all vectors  upon  with W  the space 
spanned by  and . 

2
2P = 2APA 2P

W∈xP2
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The application of a projector  with  deflating 
vectors mainly involves  inner products and  vector 
updates. The computation in the low-dimensional 
approximative eigenspace (the factorisation of  and the 
backsubstitutions) is negligible if  is much lower than 
the size of the matrix system. If the original system matrix 
has a bandwidth comparable to , the application of  
may be too expensive. As only the space W  is of 
importance, the cost of  can be further reduced by 
replacing  and w  by base vectors q  and  of W  
with a more local support (Fig. 6) [7]. The two small 
eigenvalues correspond to the two independent loop fluxes 
that can be considered in the iron parts of the model 
(Fig. 7). The algebraic sparsity of Q  enables 
an efficient application of the projector 

P

m

m

2q

m

2P

m

E

2q

m P

1w 2 1

1q[= ]

( )T1
33 AQQEIP −−=  (14) 

with  [7]. ( ) QAQE T
3 =

 

      

Fig. 6. Base vectors  and  of the approximative eigenspace 

 corresponding to the small eigenvalues of M . 
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Fig. 7. Flux patterns corresponding to the base vectors  and 
. 

1q
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The performance of the approximately deflated method 

depends on the accuracy of the approximative eigenspace 
with respect to the eigenspace corresponding to the slow 
converging eigenmodes. The numerical tests (D*ICCG in 
Fig. 2, Table 1), however, show that a rough 
approximation is sufficient to obtain a significant 
convergence improvement. The approximately deflated 
version of the ICCG solver provides an extra gain of 
convergence to which the extra work introduced by  in 
the algorithm is negligible. 

2P

In the design practice, the small-sized modellisation, 
such as e.g. a magnetic equivalent circuit, is always carried 
out before proceeding to a FE model. A common link 

between both models consists of supplying the solution of 
the rough model as a starting solution for the iterative 
solver within the FE simulation. This approach yields a 
little speed-up (Fig. 3, Table 1, Table 2) but is less 
effective when compared to deflation as it does not 
deactivate the slow converging modes in the construction 
procedure of the Krylov subspace. The deflated version of 
ICCG, presented here, recycles the rough information 
inside the Krylov subspace itself, curing the bad 
convergence due to high differences in permeability. 

7 Application 

The deflated ICCG solver is applied to simulate the 
zero-load operation of an induction machine. The FE 
model suffers from the large number of slots and cooling 
channels in the geometry. From a magnetic point of view, 
they can not be neglected as they are responsible for a 
significant decrease in permeability of the stator and rotor 
yokes. They introduce large jumps in material coefficients 
and as a consequence, slowly converging eigenmodes in 
the system matrix. 

A magnetic equivalent circuit model is appropriate for a 
fast simulation of this device. A geometric algorithm 
determines the reluctances of the magnetic paths formed 
by the stator and the rotor iron and the air gap. Flux 
leakage in the slots and the cooling channels is neglected. 
The same algorithm can be applied to construct the vectors 
attached to the FE mesh corresponding to the flux 
distributions of the independent loops in the circuit. Each 
loop consists of two stator teeth, a few rotor teeth, a part of 
the stator and the rotor yoke and two passes through the 
air gap. The FE vectors have a relatively local support and 
enable the construction of an efficient projector . 
Iteration counts of the deflated ICCG algorithm are 
compared to those of CG and ICCG in Table 3. For this 
example, deflation diminishes the solution time by a 
factor of 7. The application of the circuit solution as a 
starting solution for CG only brings a negligible speed-up 
of the system solution. 

2P

A practical disadvantage of this technique is the strong 
liaison between the modelling part and the system solving 
part in the software. Usually, the system solution is 
considered as a black-box operation. The Krylov subspace 
forms the deepest level on which a solution is determined. 
Here, the modelling information is propagated from the 
pre-processing routines up to the Krylov subspace 
algorithms. The considerable speed-up provided by 
deflation, however, justifies all efforts to recycle heuristic 
modelling information in the system solution. 
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Fig. 8. Geometry of the four-pole induction motor. 

    
 
Fig. 9. Magnetic flux lines in the induction motor. 
 
 
 
 
 

8 Conclusions 

Large discontinuous variations of the permeability in 
magnetic models give raise to bad convergence properties 
of the IC preconditioned CG iterative method applied to 
solve the linear system of equations. The eigenvectors 
corresponding to the slowly converging eigenmodes 
establish flux patterns that are easily approximated on 
heuristic grounds. An eigenspace approximating the space 
spanned by these eigenmodes is supplied to the deflated 
version of the Krylov subspace solver and yields a 
considerable improvement of the convergence of ICCG. 
The approach, presented here, indicates a powerful way to 
benefit from rough models to diminish the simulation 
times of finite element models. 

Table 3. Comparion of the convergences of CG, IC 
preconditioned CG and ICCG deflated by approximative 

eigenvectors. 
Solver Number of iteration steps 

CG 1753 
ICCG 383 

D*ICCG 62 
SICCG 372 
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