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Abstract — In general, if measurements can be repeated several
times assuming the same conditions, the measurement error can
significantly be decreased by atistically evaluating the
measur ements. However, an uncertainty band always remains.
Non-linear numerical simulations based on e.g. the Newton-
Raphson method may establish a poor convergence if they are
provided directly with measured data. Therefore, data pre-
processing is required. Here, a neural network approach is
employed. A two-layer perceptron is fitted on a measured
magnetisation curve, thereby restricting the solution to be
technically feasible while accepting the statistical nature of the
data. By using a perceptron, an analytical expression of the
magnetisation curve is obtained and expressions for its
derivatives can easily be computed.

|. MEASUREMENT DATA

Fig. 1 shows the measured magnetisation curve of iron
with a carbon content of 0.55%. The relative error €4
introduced by the measurement equals0.05, both for the
magnetic induction B (in T) and the magnetic field strength H
(in A/m). Here, the magnetisation curve is used in a particular
finite element model, in which it is more appropriate to
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Fig. 1: Measured magnetisation curve of the
ferromagnetic material with a carbon
content of 0.55 %, in terms of B and H.
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Fig. 2: Measured magnetisation curve of the
ferromagnetic material in Fig. 1, in
terms of v and B2

search for a characteristic in terms of the magnetic reluctivity
v (in Am/V's) and the square of the magnetic induction B (in
T?) (Fig. 2) [1]. However, by this transformation the relative
error on v and B? becomes 2¢,4 , thus 0.10 .

II. NEURAL NETWORK APPROACH

It can be proven that any feed-forward neura network
with two layers of adaptive weights is capable of modelling
any continuous functional mapping. Perceptrons form a
specia class of feed-forward neural networks [2]. Here, a
biased one-input one-output two-layer perceptron with
sigmoidal activation functions and linear output units is
chosen to approximate the measured magnetisation curve.
The mathematical representation of this perceptron is

M
V= ZWJ(Z)(pj (aj )+ Wéz)
" , (1)
= Z widlg, (Wj(ll)BZ + w§13)+ w)
]:
with wflg the first layer bias weights to neuron j, wfll) the first
layer weights from input B? to neuronj, a; the activation of
neuron j, @;(a;) the activation function of neuronj, w? the
second layer bias weight to output v, WJ@O the second layer

weights from neuronj to output v and M the number of
neurons (Fig. 3). Each circle corresponds to a single neuron,

v

Fig. 3: Schematic view of a biased one-input
one-output two-layer perceptron.
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Fig. 4. Thesigmoidal activation function.

which transforms its input into an output by means of a
sigmoidal activation function (Fig. 4):

1
la. )= ) 2
o)== @
Once the weights have been determined, their values are
fixed. The first and second derivative of the output with
respect to the input are then given by:
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respectively. The derivatives (3) and (5) are used during
the optimisation process.

I11. SUM-OF-SQUARES ERROR

In order to optimise the weights of the perceptron, a sum-
of-squares error E is defined:

E= i (v (v) —v("))2 (7)
n= P " ,

with v(p”) the reluctivity computed by the perceptron for the

n" of N measurements and VEQ) the measured reluctivity.

This sum-of-squares error only depends on the weights and is
therefore denoted by E(w). The weights are then determined
by minimising this sum-of-squares error in an iterative
algorithm.

To improve the convergence rate of the optimisation
algorithm, the gradient OE(w) must be provided. This
gradient can aso be obtained analytically. The partia
derivative of E with respect to the second layer weightsis

N
w7 =2, 00 -v)ael) ®

The partia derivatives of E with respect to the first layer
weights are more expensive to compute:
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IV. OPTIMISATION OF THE WEIGHTS

The output of the optimised perceptron must be within the
uncertainty band of the measurements. It is observed that this
is not aways the case when simply minimising the sum-of-
squares error. Therefore, the optimisation problem is
extended with function constraints on the output of the
perceptron. However, the result may still not be suitable for
use in a non-linear finite element model, because it may
hamper the convergence rate of the Newton-Raphson
iteration [1,5]. As a result, to make the magnetisation curve
technically feasible, constraints need also to be added on the
derivatives of the perceptron output [4].

The optimisation process of the perceptron weights may
not converge when directly starting the optimisation
considering all required constraints on the perceptron output
and its derivatives. Therefore, the optimisation process is
performed in three successive steps:

1. Anunconstrained minimisation of E(w);

2. A constrained minimisation of E(w), requiring the output
of the perceptron to be within the uncertainty band of the
measurement;

3. A constrained optimisation of E(w) as in the previous
step, but with the additional restriction that the output of
the perceptron must be technically feasible.

Before starting the unconstrained minimisation of E(w),
al perceptron weights are initiaised to zero. The
unconstrained minimisation problem is then solved using a
Broyden-Fletcher-Goldfarb-Shanno  (BFGS) Quasi-Newton
Line-Search method [3]. The agorithm is terminated when
the sum-of-squares error varies less than 0.5 % during five
successive iterations. A sufficiently accurate initial
approximation for the first constrained optimisation step is
now determined.

The function constraints are then added to the
minimisation process. These constraints can be computed
from the relative error on the measurements. This error
defines an uncertainty band in the v - B? plane around each
measurement. If this band is defined by the intervals
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Fig. 5: Interpretation of the function constraints.

[Bmm max] and [len max] the @nstraints to be supplied
are (Fig. 5):
v (B2 )<v
S "

This constrained minimisation problem is wlved by
Sequential Quadratic Programming, in which the Hessian of
the Lagrangian is updated at ead iteration using the BFGS
formula. The quadratic subproblem at each iteration is olved
by the adive set method [3]. Like in the previous dep, the
algorithm is terminated when the sum-of-squares error varies
less than 0.5% during five successive iterations. Some
congtraints may still be violated and are transferred to the last
optimisation step.

Now, the perceptron output is within the uncertainty band
of the majority of measurements, but it may not satisfy the
technicd constraints. For the example studied here, it is
required that the reluctivity and its first derivative with
resped to B? increae monotonicdly when B? increases.
Moreover, the first derivative must be zeo if B equals zero
[4]. Mathematicdly, thisis expressd by:

dB’ B=0
11

As it is impaossble to impose the inequality constraint over
the whole domain, a number of uniformly distributed pants
is chosen in which this constraint must be satisfied. The same
congtrained optimisation method is used as in the previous
case. However, the dgorithm is now terminated once 4l
seond derivative cnstraints and most function constraints
are satisfied. The latter, becaise it may happen that some
measurements are outliers.

V. REMARKS

The reluctivity varies in magnitude over two decales,
which hampers the training of the neural networks. The
optimisation algorithm converges dowly. To avoid this, the
measured data must be pre-processed. The simplest way to

perform this, is normalising the data by subtrading the
average value and dviding by the deviation. A more
sophisticaded method is cdled ‘whitening’ and takes
correlations between the data into account [2].

Here, the data normalisation is combined with a preceling
logarithmic transformation of the reluctivity:
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with p and o the average and the standard deviation of the
quantity between bradets respedively. The network is then
trained on the normalised data X~ and Y'. Hence the
congtraints must also be transformed. This is done by
applying the chain rule:
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Due to this transformation, five extra floating point
operations have to be performed in order to compute a
reluctivity for a given sguared flux density. However, thisis
not a disadvantage, as lessneurons are required for acairrately
modelling the charaderistic.

The input data ae not uniformly distributed over the
interval of interest. As a cnsequence, the minimisation of the
sum-of-squares error concentrates on intervals in which the
density of data points is large. This can be avoided by
weighting the sum-of-squares error, considering the
distribution of the data in a histogram. The modified sum-of-
squares error then becomes:

Y1 w0
4 W(V(p)“’(m))
== ] , (16)

with P® the probability of the "™ measurement inpui.
V1. NETWORK TRAINING RESULTS

Fig.6 compares the optima solution with the
measurements and the solution obtained after the
unconstrained minimisation, for a perceptron with five
neurons. Obvioudy, the unconstrained minimisation
converges to the wnditional average of the measured



100

80 ‘ ).(/

Optimum —%

60

20 Unconstrained ~— 3

20 i
M easurement
0 WO .. ; ;

0 2 3 5 6 8

—

Reluctivity [kKAm/Vs]

Square of magnetic induction B2 [T?]

Fig. 6: Comparison of the optimal solution with
the measurements and the unconstrained

solution.
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Fig. 7: Normalised value of the first and second
derivative of the solution.

reluctivities [2], whereas the constrained minimisation also
must satisfy the constraints. This is illustrated for higher
values of B,

The derivative and the second derivative of the output
with respect to the input are normalised and plotted in Fig. 7.
These characteristics prove that the first derivative and the
second derivative are always positive, as was imposed by the
constraints. The smoothness of both curves may be improved
by adding more constraints to the problem. This slows down
the optimisation procedure, but thisisa minor problem, since
it only has to be done once.

The error evolution of the (normalised) network is plotted
in Fig. 8. The constraints increase the minimum error
dightly. When switching to the second constrained
minimisation step, the error amost remains the same and the
weights are only dlightly altered.

VII. INFLUENCE OF NETWORK SIZE

The sum-of-squares error obtained after the unconstrained
optimisation phase can be decreased by increasing the
number of neurons, because more degrees of freedom are
involved. However, the better a perceptron fits to the exact
data, the more curvature it features. One of the easiest ways
to avoid those overfitted solutions is the permanent
monitoring of the sum-of-squares error during training on a
completely independent data set, called the validation set [2].
The training process is stopped when the error on the
validation set starts to increase. For perceptrons with less
than six neurons, it is observed that other stopping criteria
determine the end of the unconstrained optimisation phase.
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Fig. 8: Evolution of the sum-of-squares error.
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Fig. 9: Influence of the number of neurons on
the sum-of-squares error, for some
networks with random initial guesses for
the weights.

The influence of the number of neurons on the sum-of-
squares error after the constrained optimisation phases is
plotted in Fig. 9. Overfitted solutions cannot be obtained
here, because curvature constraints are applied. For a fixed
network size, four networks have been separately optimised,
each network having a different random initial set of weights.
A trendline is drawn through the averaged value. It is obvious
that the error decreases for an increasing number of neurons.
Further increasing the network size may lower the error
dightly. A compromise must be made between this error and
the time to compute a network output, as eventualy the
network must be implemented in a numerical simulation
package.

VII1. COMPUTATION OF AN ELECTROMAGNET

As an example, the computation of an electromagnet
using a perceptron approximation for the BH-characteristic of
the armature is given. The armature is driven into saturation
by applying a sufficiently high current to the coil. The static
non-linear problem is solved by the finite element method.

Fig. 10a shows the expected solution, for the fully
optimised five-neuron perceptron of Fig. 6. Fig. 10b
illustrates the oscillatory solution obtained when using the
unconstrained optimised perceptron. In Fig. 11, the
convergence behaviour of the Newton method is plotted for
the optimised perceptron and for the partialy optimised
perceptron obtained by replacing the second derivative
congtraint in (11) by a first derivative constraint which must
be positive. Obvioudy, the latter converges sower, because
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Fig. 10: Magnetic field distribution in an electro-
magnet, obtained by using a five-neuron
(@) optimised and (b) non-optimised
perceptron for the BH-characteristic of
the armature.

the smoothness of the resulting charaderistic is smaller in
that case.

IX. CONCLUSIONS

A method is described which optimises the weights of a
perceptron in order to obtain a tecdhnicdly feasble
magnetisation curve which approximates the measured data.
It is srown that a perceptron with five neurons is sufficient to
read this aim. An advantage of using a perceptron is the fad
that all its derivatives can be cdculated analyticdly. The data
are normalised by a logarithmic transformation of the
reluctivity. Although this implies a few extra floating point
operations, it yields a deaease of the required number of
neurons and it improves the nvergence rate of the
optimisation algorithm. When the number of neurons is
small, it is not necessary to monitor the model on an
independent validation set. The sum-of-squares error of the
optimised perceptron deaeases for an increasing network
size. A compromise hasto be made between the network size
and the time to compute the network output. An example is
given to illustrate the feasibility of the neura network
approximation.
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Fig. 11: Convergence of the Newton-method,
obtained by using a five-neuron partially-
optimised and fully-optimised perceptron
for the BH-characteristic of the armature.
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