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Abstract — In general, if measurements can be repeated several
times assuming the same conditions, the measurement error can
significantly be decreased by statistically evaluating the
measurements. However, an uncertainty band always remains.
Non-linear numerical simulations based on e.g. the Newton-
Raphson method may establish a poor convergence if they are
provided directly with measured data. Therefore, data pre-
processing is required. Here, a neural network approach is
employed. A two-layer perceptron is fitted on a measured
magnetisation curve, thereby restricting the solution to be
technically feasible while accepting the statistical nature of the
data. By using a perceptron, an analytical expression of the
magnetisation curve is obtained and expressions for its
derivatives can easily be computed.

I. MEASUREMENT DATA

Fig. 1 shows the measured magnetisation curve of iron
with a carbon content of 0.55 %. The relative error εrel

introduced by the measurement equals 0.05, both for the
magnetic induction B (in T) and the magnetic field strength H
(in A/m). Here, the magnetisation curve is used in a particular
finite element model, in which it is more appropriate to

search for a characteristic in terms of the magnetic reluctivity
ν (in Am/Vs) and the square of the magnetic induction B2 (in
T2) (Fig. 2) [1]. However, by this transformation the relative
error on ν and B2 becomes 2εrel , thus 0.10 .

II. NEURAL NETWORK APPROACH

It can be proven that any feed-forward neural network
with two layers of adaptive weights is capable of modelling
any continuous functional mapping. Perceptrons form a
special class of feed-forward neural networks [2]. Here, a
biased one-input one-output two-layer perceptron with
sigmoidal activation functions and linear output units is
chosen to approximate the measured magnetisation curve.
The mathematical representation of this perceptron is
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with ( )1
0jw  the first layer bias weights to neuron j, ( )1

1jw  the first

layer weights from input B2 to neuron j, ja the activation of

neuron j, )( jj aφ  the activation function of neuron j, ( )2
0w  the

second layer bias weight to output ν, ( )2
0≠jw  the second layer

weights from neuron j to output ν and M the number of
neurons (Fig. 3). Each circle corresponds to a single neuron,
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Fig. 1: Measured magnetisation curve of the
ferromagnetic material with a carbon
content of 0.55 %, in terms of B and H .

0

20

40

60

80

100

0 2 3 5 6 8

Square of magnetic induction B 2  [T2]

R
el

uc
tiv

ity
 [

kA
m

/V
s]

Fig. 2: Measured magnetisation curve of the
ferromagnetic material in Fig. 1, in
terms of ν and B2.
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Fig. 3: Schematic view of a biased one-input
one-output two-layer perceptron.



which transforms its input into an output by means of a
sigmoidal activation function (Fig. 4):
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Once the weights have been determined, their values are
fixed. The first and second derivative of the output with
respect to the input are then given by:
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respectively. The derivatives (3) and (5) are used during
the optimisation process.

III. SUM-OF-SQUARES ERROR

In order to optimise the weights of the perceptron, a sum-
of-squares error E is defined:
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with ( )n
pν  the reluctivity computed by the perceptron for the

nth of N measurements and ( )n
mν  the measured reluctivity.

This sum-of-squares error only depends on the weights and is
therefore denoted by E(w). The weights are then determined
by minimising this sum-of-squares error in an iterative
algorithm.

To improve the convergence rate of the optimisation
algorithm, the gradient ∇E(w) must be provided. This
gradient can also be obtained analytically. The partial
derivative of E with respect to the second layer weights is
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The partial derivatives of E with respect to the first layer
weights are more expensive to compute:
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IV. OPTIMISATION OF THE WEIGHTS

The output of the optimised perceptron must be within the
uncertainty band of the measurements. It is observed that this
is not always the case when simply minimising the sum-of-
squares error. Therefore, the optimisation problem is
extended with function constraints on the output of the
perceptron. However, the result may still not be suitable for
use in a non-linear finite element model, because it may
hamper the convergence rate of the Newton-Raphson
iteration [1,5]. As a result, to make the magnetisation curve
technically feasible, constraints need also to be added on the
derivatives of the perceptron output [4].

The optimisation process of the perceptron weights may
not converge when directly starting the optimisation
considering all required constraints on the perceptron output
and its derivatives. Therefore, the optimisation process is
performed in three successive steps:

1. An unconstrained minimisation of E(w);
2. A constrained minimisation of E(w), requiring the output

of the perceptron to be within the uncertainty band of the
measurement;

3. A constrained optimisation of E(w) as in the previous
step, but with the additional restriction that the output of
the perceptron must be technically feasible.

Before starting the unconstrained minimisation of E(w),
all perceptron weights are initialised to zero. The
unconstrained minimisation problem is then solved using a
Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
Line-Search method [3]. The algorithm is terminated when
the sum-of-squares error varies less than 0.5 % during five
successive iterations.  A sufficiently accurate initial
approximation for the first constrained optimisation step is
now determined.

The function constraints are then added to the
minimisation process. These constraints can be computed
from the relative error on the measurements. This error
defines an uncertainty band in the ν - B2 plane around each
measurement. If this band is defined by the intervals
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Fig. 4: The sigmoidal activation function.
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min BB  and [ ]maxmin νν  , the constraints to be supplied

are (Fig. 5):
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This constrained minimisation problem is solved by
Sequential Quadratic Programming, in which the Hessian of
the Lagrangian is updated at each iteration using the BFGS
formula. The quadratic subproblem at each iteration is solved
by the active set method [3]. Like in the previous step, the
algorithm is terminated when the sum-of-squares error varies
less than 0.5 % during five successive iterations. Some
constraints may still be violated and are transferred to the last
optimisation step.

Now, the perceptron output is within the uncertainty band
of the majority of measurements, but it may not satisfy the
technical constraints. For the example studied here, it is
required that the reluctivity and its first derivative with
respect to B2 increase monotonically when B2 increases.
Moreover, the first derivative must be zero if B equals zero
[4]. Mathematically, this is expressed by:
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As it is impossible to impose the inequality constraint over
the whole domain, a number of uniformly distributed points
is chosen in which this constraint must be satisfied. The same
constrained optimisation method is used as in the previous
case. However, the algorithm is now terminated once all
second derivative constraints and most function constraints
are satisfied. The latter, because it may happen that some
measurements are outliers.

V. REMARKS

The reluctivity varies in magnitude over two decades,
which hampers the training of the neural networks. The
optimisation algorithm converges slowly. To avoid this, the
measured data must be pre-processed. The simplest way to

perform this, is normalising the data by subtracting the
average value and dividing by the deviation. A more
sophisticated method is called 'whitening' and takes
correlations between the data into account [2].

Here, the data normalisation is combined with a preceding
logarithmic transformation of the reluctivity:
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with µ and σ the average and the standard deviation of the
quantity between brackets respectively. The network is then
trained on the normalised data X** and Y**. Hence, the
constraints must also be transformed. This is done by
applying the chain rule:
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Due to this transformation, five extra floating point
operations have to be performed in order to compute a
reluctivity for a given squared flux density. However, this is
not a disadvantage, as less neurons are required for accurately
modelling the characteristic.

The input data are not uniformly distributed over the
interval of interest. As a consequence, the minimisation of the
sum-of-squares error concentrates on intervals in which the
density of data points is large. This can be avoided by
weighting the sum-of-squares error, considering the
distribution of the data in a histogram. The modified sum-of-
squares error then becomes:
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with ( )nP  the probabilit y of the nth measurement input.

VI. NETWORK TRAINING RESULTS

Fig. 6 compares the optimal solution with the
measurements and the solution obtained after the
unconstrained minimisation, for a perceptron with five
neurons. Obviously, the unconstrained minimisation
converges to the conditional average of the measured

B2
maxB2

min

νmax

νmin

ν (B2)ν

B2

Fig. 5: Interpretation of the function constraints.



reluctivities [2], whereas the constrained minimisation also
must satisfy the constraints. This is illustrated for higher
values of B2.

The derivative and the second derivative of the output
with respect to the input are normalised and plotted in Fig. 7.
These characteristics prove that the first derivative and the
second derivative are always positive, as was imposed by the
constraints. The smoothness of both curves may be improved
by adding more constraints to the problem. This slows down
the optimisation procedure, but this is a minor problem, since
it only has to be done once.

The error evolution of the (normalised) network is plotted
in Fig. 8. The constraints increase the minimum error
slightly. When switching to the second constrained
minimisation step, the error almost remains the same and the
weights are only slightly altered.

VII. INFLUENCE  OF  NETWORK  SIZE

The sum-of-squares error obtained after the unconstrained
optimisation phase can be decreased by increasing the
number of neurons, because more degrees of freedom are
involved. However, the better a perceptron fits to the exact
data, the more curvature it features. One of the easiest ways
to avoid those overfitted solutions is the permanent
monitoring of the sum-of-squares error during training on a
completely independent data set, called the validation set [2].
The training process is stopped when the error on the
validation set starts to increase. For perceptrons with less
than six neurons, it is observed that other stopping criteria
determine the end of the unconstrained optimisation phase.

The influence of the number of neurons on the sum-of-
squares error after the constrained optimisation phases is
plotted in Fig. 9. Overfitted solutions cannot be obtained
here, because curvature constraints are applied. For a fixed
network size, four networks have been separately optimised,
each network having a different random initial set of weights.
A trendline is drawn through the averaged value. It is obvious
that the error decreases for an increasing number of neurons.
Further increasing the network size may lower the error
slightly. A compromise must be made between this error and
the time to compute a network output, as eventually the
network must be implemented in a numerical simulation
package.

VIII. COMPUTATION OF AN ELECTROMAGNET

As an example, the computation of an electromagnet
using a perceptron approximation for the BH-characteristic of
the armature is given. The armature is driven into saturation
by applying a sufficiently high current to the coil. The static
non-linear problem is solved by the finite element method.

Fig. 10a shows the expected solution, for the fully
optimised five-neuron perceptron of Fig. 6. Fig. 10b
illustrates the oscillatory solution obtained when using the
unconstrained optimised perceptron. In Fig. 11, the
convergence behaviour of the Newton method is plotted for
the optimised perceptron and for the partially optimised
perceptron obtained by replacing the second derivative
constraint in (11) by a first derivative constraint which must
be positive. Obviously, the latter converges slower, because
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the smoothness of the resulting characteristic is smaller in
that case.

IX. CONCLUSIONS

A method is described which optimises the weights of a
perceptron in order to obtain a technically feasible
magnetisation curve which approximates the measured data.
It is shown that a perceptron with five neurons is sufficient to
reach this aim. An advantage of using a perceptron is the fact
that all i ts derivatives can be calculated analyticall y. The data
are normalised by a logarithmic transformation of the
reluctivity. Although this implies a few extra floating point
operations, it yields a decrease of the required number of
neurons and it improves the convergence rate of the
optimisation algorithm. When the number of neurons is
small, it is not necessary to monitor the model on an
independent validation set. The sum-of-squares error of the
optimised perceptron decreases for an increasing network
size. A compromise has to be made between the network size
and the time to compute the network output. An example is
given to il lustrate the feasibilit y of the neural network
approximation.
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Fig. 10: Magnetic field distribution in an electro-
magnet, obtained by using a five-neuron
(a) optimised and (b) non-optimised
perceptron for the BH-characteristic of
the armature.
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obtained by using a five-neuron partially-
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for the BH-characteristic of the armature.


