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Abstract. The magnetic material’s deformation caused by magnetostriction is represented by an equivalent
set of mechanical forces, giving the same deformation to the material as magnetostriction does. This is
done in a way similar to how thermal stresses are usually incorporated into stress analysis. The resulting
magnetostriction force distribution can be superposed onto other force distributions, like the magnetic
force distribution. These two force distributions are the key ingredients of a numerically strong coupling
of the magnetic and the mechanical finite element systems.

PACS. 75.80.+q Magnetomechanical and magnetoelectric effects, magnetostriction

1 Introduction

An important source of vibrations and noise in electric
devices, rotating as well as non-rotating, are the defor-
mations caused by magnetostriction. These magnetostric-
tive deformations can be of the same order of magnitude
as the deformations caused by reluctance forces (Maxwell
stresses) on the iron-air interface [1]. The incorporation of
magnetostriction in the numerical design process is usu-
ally impaired since detailed data on the magnetic material
behaviour are difficult to obtain. Versatile experimental
methods to obtain all needed technical data on magne-
tostriction, permeability, losses, etc. are reviewed in [2].
Once the magnetostrictive behaviour of the material is
known, it has to be incorporated in the magnetic and me-
chanical analysis. The strong-coupled magnetomechanical
finite element (FE) model [3] is briefly reviewed and it is
illustrated how to expand this model to take magnetostric-
tion into account. The magnetostriction material charac-
teristic, e.g. in λ(B) format (magnetostrictive strain λ as
a function of magnetic flux density B), is assumed to be
known.

2 The magnetomechanical system

Both magnetostatic and elasticity FE methods are based
upon the minimisation of an energy function. The total
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energy E of the magnetomechanical system consists of the
magnetic energy W stored in a linear magnetic system
with vector potential A, and the elastic energy U stored
in a body with deformation a:

E = W + U =
1
2
AT MA +

1
2
aT Ka, (1)

where K is the mechanical stiffness matrix and M is the
magnetic ‘stiffness’ matrix. Considering the similar form
of the energy terms (1), a good candidate to represent the
magnetomechanical system is[

M D
C K

] [
A
a

]
=

[
T
R

]
, (2)

where T is the magnetic source term vector and R repre-
sents external forces. The partial derivatives of the total
energy E with respect to the unknowns [A a]T identify
with the combined system (2):

∂E

∂A
= MA +

1
2
aT ∂K

∂A
a = 0, (3)

∂E

∂a
=

1
2
AT ∂M

∂a
A + Ka = 0. (4)

Using (2), (3) and (4), the coupling terms C and D are
recognised as

C =
1
2
AT ∂M

∂a
, (5)
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D =
1
2
aT ∂K

∂A
· (6)

3 Magnetic forces

The magnetic stiffness matrix M is a function of perme-
ability µ and geometry x. The geometry depends on the
displacement a by x = x0 + a, so that ∂M/∂a 6= 0. Rear-
ranging the mechanical equation (4) into

Ka = −1
2
AT ∂M

∂a
A = −CA = Fmag, (7)

reveals a means to calculate the magnetic forces Fmag

internal to the magnetomechanical system. For the non-
linear case, M(a) becomes M(A, a) and magnetic energy
W is given by the integral

W =
∫ A

0

T T dA =
∫ A

0

AT M(A, a)dA, (8)

where T=MA and MT =M was used. The force expres-
sion (7) now becomes

Fmag = −∂W (A, a)
∂a

= −
∫ A

0

AT ∂M(A, a)
∂a

dA. (9)

The partial derivative ∂M/∂a and the integral (9) are
found analytically using the shape functions and the mag-
netization characteristic of the material, e.g. ν(B2), as ex-
plained in detail in [3].

The interpretation of the coupling term D for magne-
tostrictive materials will be investigated in Section 5. For
materials without magnetostriction, the term D vanishes
since the mechanical stiffness matrix K is a function of
Young modulus, Poisson modulus and geometry only. For
D = 0, and with the magnetic forces Fmag = −CA shifted
to the right hand side of (2), the system becomes

[
M 0
0 K

] [
A
a

]
=

[
T

R + Fmag

]
. (10)

4 Magnetostriction forces

4.1 Concept

Now magnetostriction is built into the analysis using a
force distribution Fms that can be added to R and Fmag.
By magnetostriction forces Fms we indicate the set of
forces that induces the same strain in the material as
the magnetostriction effect does. This approach is simi-
lar to the use of thermal stresses due to heating [5]. In
calculating thermal stresses, the thermal expansion of the
free body (no boundary conditions) is calculated based on
the temperature distribution, and the thermal stresses are
found by deforming the expanded body back into its orig-
inal shape (back inside the original boundary conditions).
In calculating magnetostriction forces, the expansion of
the free body due to magnetostriction is calculated based

Fig. 1. Magnetostrictive material characteristics of non-
oriented 3% SiFe (solid lines, as a function of tensile stress)
and M330-50A (dashed lines, for rolling and transverse direc-
tion).

on the magnetic flux density, and the magnetostriction
forces are found as the reaction to the forces needed to
deform the expanded body back into the original bound-
ary conditions.

For FE models, this can be done on an element by
element basis. The midpoint (center of gravity) of the ele-
ment is considered to be fixed. The magnetostrictive defor-
mation of the element, i.e. the displacement of the nodes
with respect to the midpoint, is found using the element’s
flux density Be and the λ(B) characteristic of the mate-
rial. If a set of λ(B, σ) characteristics are given, one has
to be chosen for the appropriate value of tensile stress.

4.2 Strain for isotropic materials

Figure 1 shows a typical magnetostriction characteristic
for isotropic 3% SiFe (solid lines) as a function of tensile
stress σ. For isotropic materials, the local xy-axes of the
element are chosen so that the flux density vector B coin-
cides with the local x-axis. Usually, magnetostriction will
not change the total volume and density [4], so that the
strains in the local frame are given by

λx = λ
λy = λt = −λ/2
λz = λt = −λ/2

(11)

where λ = λ(B) is the magnetostrictive strain in the di-
rection of B and λt is the magnetostrictive strain in the
transverse directions. The volume invariance is equivalent
to a magnetostrictive ‘Poisson modulus’ of 0.5, which is
bigger than the mechanical Poisson modulus of about 0.3.
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Fig. 2. Set of forces (right) representing the strain caused by
magnetostriction due to the magnetic field B (left), consists of
a set parallel and a set perpendicular to the flux vector.

Therefore, when magnetostriction is represented by a set
of mechanical forces, there is always a set of forces in the
direction of B and a set perpendicular to B to correct
this difference in Poisson modulus (Fig. 2).

In a 2D plane strain analysis, the thickness (z-
direction) of the material has to remain constant and an
additional z-stress needs to be applied in order to obtain
λz = 0. This adjusts the values (11) to

λx = λ + νλt

λy = λt + νλt

λz = λt − λt = 0
(12)

where ν is the Poisson modulus of the material.

4.3 Strain for anisotropic materials

Figure 1 shows a typical magnetostriction characteristic
for anisotropic M330-50A steel (dashed lines) for rolling
direction and transverse direction. For anisotropic mate-
rials, the flux density vector is decomposed into a Bx and
a By component in the element’s local xy-axes, arranged
so that the x-axis coincides with the rolling direction, and
the y-axis with the transverse direction. The rolling direc-
tion curve λRD(B) is then used with Bx as input, and the
perpendicular direction curve λPD(B) with By as input,
giving

λx = λRD(Bx)− νλPD(By)
λy = λPD(By)− νλRD(Bx)
λz = −νλRD(Bx)− νλPD(By).

(13)

A similar correction as above can be made for plane strain.

4.4 Displacement and force

Still working in the local xy-axes, the element’s strains λe
x,

λe
y are converted into three nodal displacements ae

ms,i =
(ae

x,i, a
e
y,i), i = 1, 2, 3 considering the midpoint of the ele-

ment (xe
m, ye

m) as fixed:
[

ae
x,i

ae
y,i

]
=

[
xi − xe

m

yi − ye
m

] [
λe

x
λe

y

]
, (14)

where i is the index for the three element nodes (xi, yi).

The mechanical element stiffness matrix Ke yields, af-
ter multiplication with the magnetostrictive displacement
ae
ms of the nodes, the nodal magnetostriction forces

F e
ms = Keae

ms. (15)

Equation (15) has to be performed element by element
(using Ke) and not for the whole mesh at once (using the
global matrix K), because the N different displacements
ams,ij , j = 1...N , due to magnetostriction in the N ele-
ments surrounding node i, should not be summed. The
magnetostriction forces are now introduced in (10) giving

[
M 0
0 K

] [
A
a

]
=

[
T

R + Fmag + Fms

]
. (16)

The force distribution Fms or the total distribution Fmag+
Fms can also be used for any other kind of post-processing
based on force distributions, e.g. calculating mode par-
ticipation factors with stator mode shapes [3].

5 The coupling term ∂U/∂A

The term D in (2) is related to magnetostriction: Da rep-
resents the change in elastic energy U due to a change dA
(with corresponding change in magnetic field dB), with
deformation a held constant:

Da ∼ ∂U

∂A
, (17)

where ∼ anticipates to the fact that ∂U/∂A will turn out
to have terms independent of a. Imagine an element with
deformation a0 and flux density B0. When the flux density
in the element increases to B0 +∆B, the element expands
to a0 + ∆a due to magnetostriction (no external stresses
need to be applied, so ∆U = 0, ∆a 6= 0). In order to find
the elastic energy change ∆U due to ∆B but for constant
deformation, the element needs to be shrunk back to its
original deformation a0. The external work done to go
back from a0 + ∆a to a0 is stored in ∆U and allows us
to find ∆U/∆B . For an isotropic material under plane
stress, ∂U/∂A is

∂U

∂A
= ∆tE

5/4− ν

1− ν2
λ(A)

∂λ(A)
∂A

, (18)

where ∆ and t are element area and thickness and E and
ν are Young and Poisson modulus. By expanding the area
∆ in terms of x0 and a (linked by x = x0 + a) as

∆(x0 + a) = xT
0 d1x0 + xT

0 d2a + aT d3a, (19)

(18) can be rewritten as

∂U

∂A
= xT

0 D1x0 + xT
0 D2a + aT D3a. (20)

Since a � x0, the third term in (20) can be neglected.
The first term in (20) does not depend on displacement a
and should be put on the right hand side of the coupled
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Fig. 3. Geometry and flux lines for iron core excited by current
in copper coil.

system (2). This term can be interpreted as an additional
current density Ims representing the influence of magne-
tostriction on the magnetic field. The second term can be
identified with the term Da in (2). Interpreting (20) in
this way gives

∂U

∂A
≈ Ims + Da + 0, (21)

so that the system with strong coupling becomes
[

M D
C K

] [
A
a

]
=

[
T − Ims

R + Fms

]
. (22)

6 Example

Figure 3 shows an iron core (side 100 mm, E = 2.2 ×
1011 Pa, ν = 0.3) with flux lines due to excitation by the
copper coil (0.025 A/mm2). The iron core is mechanically
fixed with a pin on its right bottom corner, and a horizon-
tal slider on its left bottom corner. The magnetostriction
of the iron core material is isotropic and follows the ‘rolling
direction’ curve in Figure 1. Figure 4 shows the magne-
tostriction forces Fms and the deformation caused by mag-
netostriction (2×105 times magnified). Figure 5 shows the
magnetic forces (9) and the deformation caused by them
(4 × 108 times magnified). For this example (no airgap),
the magnetic forces are about 2000 times smaller than the
magnetostriction forces. Since the magnetic forces cause
the core to shrink, and the magnetostriction causes the
core to expand, this example clearly differentiates between
these two phenomena.

These results were obtained solving (22) using 15 steps
of successive substitution with a relaxation factor 0.4.

7 Conclusions

The numerically strong coupling of the magnetic and me-
chanical finite element systems is based upon the magnetic
force distribution and upon magnetostriction. The mag-
netostriction can be represented by a set of forces giving
the same deformation to the material as magnetostriction

(a)

(b)

Fig. 4. (a) Magnetostriction force distribution and (b) result-
ing deformation (magnetic forces excluded).

does. Two additional terms ∂U/∂A = Ims + Da represent
the influence of magnetostriction on the magnetic field
itself.
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(a) (b)

Fig. 5. (a) Magnetic force distribution and (b) resulting deformation (no magnetostriction).
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