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Abstract  The coupled transient computation of the
interacting electromagnetic-thermal fields in electrical
energy transducers containing significantly different time
constants is discussed. Methodologies to deal with the
numerical stiffness, encountered in the magnetic field,
thermal field and loss computation, while using standard
integration methods, are outlined. Such computation
techniques are illustrated using two application examples:
a permanent magnet synchronous machine and a three-
phase transformer.

Index Terms  electro-thermal effects, finite element
method, thermal modeling

I. INTRODUCTION

A. Problem Situation

In different types of electrical energy transducers such as
transformers, electrical machines and generators, it is
important to study the electromagnetic behavior jointly with
the thermal behavior, for instance to study the efficiency, to
estimate the life-time, etc. Two interactions justify such a
coupled view:
• Most thermal energy sources heating up these devices are

in fact electromagnetic losses. These can be Joule type
losses such as eddy current losses or iron losses.
Generally, these quantities are a function of the local
electromagnetic field. Therefore they represent a coupling
of the electromagnetic field to the thermal field.

• Many material characteristics playing a role in the
electromagnetic field are depending on the local
temperature. For instance, the electrical conductivity of a
copper conductor may change about 30 % over the
temperature interval of some 100 °C in which most
electrical machines operate. Another important example is
the shift of the permanent magnet characteristic of the

hard magnetic materials involved in permanent magnet
machines under local temperature changes [1].

For these reasons, it is often a necessity to perform a coupled
field analysis, using for instance the Finite Element Method
(FEM) [2], already in the design stage of the electrical energy
transducer. However, the different nature of the physical
fields involved and especially the dynamics, reflected in their
characteristic time constants, impose difficulties in the
simulation.

B. Numerical Stiffness

Transient numerical simulations become troublesome
when the system to be simulated contains dynamic
phenomena on a largely different time scale (time constant)
[3]. In the case of electromagnetic fields, the typical time
scale is small as it is governed by the supply’s fundamental
frequency and the rotation. It can even be smaller when
power electronic supplies using PWM techniques, yielding
enlarged losses, are used. On the other hand, the thermal field
changes at a much slower rate. The ratio between the largest
and smallest time constant is known as the stiffness ratio,
which can have values of as high as 1010 for electrical
machines.

The mathematical difficulty arising while simulating the
coupled transient behavior is known as numerical stiffness.
Other authors dealing with similar and other coupled problem
computations (e.g. [4]) encountered similar problems and
used adapted techniques such as backward differentiation
(BDF) methods. This problem is treated in this paper along
with some approaches to solve it while using standard
integration methods.

The main problem is related to the time step choice in the
simulation. The following options exist:
• the choice of a very small but stable time step, related to

the magnetic field dynamics, yielding an extremely long
calculation time;

• the choice of a large time step related to the thermal time
step, requiring special, expensive integration methods in
order to obtain a stable computation;

• it might seem interesting to use different time steps for
the subproblems, but this involves a possibly unstable
extrapolation;

• assume that one of the subproblems is in a 'continuous
steady-state': this technique is often applied (e.g. [5]),
more in particular when the magnetic field is recalculated
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in the frequency domain after every time step, however,
it cannot be excluded that the underlying implicit
extrapolation yields a divergence as demonstrated in [6];

• adapt the problem formulation to work around a time
scale and use standard integration methods.

The latter approach is illustrated here.

II. MAGNETIC FIELD ANALYSIS

The 2D magnetic field equation is written in terms of the
magnetic vector potential [7]:
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with: A : z-component of the vector potential
T : Temperature
υ  : Reluctivity
σ : Electrical conductivity
Vs: Source voltage
M : Permanent magnet source field

In the further development of this equation, one has to
account for the rotational time constant. Two approaches are
made, depending on the preferred choice of reference frame.

A. Reference frame with fixed magnetic field

In electrical machines such as DC-machines and
synchronous machines, it is interesting to fix the reference
frame to the field source to obtain a relatively fixed magnetic
field arrangement. For synchronous machines, it is fixed to
the rotor and for DC-machines to the stator. In that case, the
induced voltage term is developed as:
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For a rotating device, the effect of the second term in (2)
containing the speed vr , representing the voltage induced by
the rotation, is dominant over the local field changes
described by the first term. However, these changes
contribute to the losses (e.g. in the magnets). The first term in
(2) is neglected in the global field calculation, the second
term is usually calculated separately, by extracting the
fundamental induced voltage [8]. It is then substituted in (1)
as a finite difference (3). The parameter θ originates from the
time stepping method [7].
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Consequently, the magnetic model is reduced to a series
of (semi-)static magnetic field computations with externally
determined currents, computed once per thermal time-step.

The temperature dependent material properties change with
the pace of the thermal model’s time-step.

B. Reference frame with rotating or oscillating magnetic field

Alternatively, it is possible to use a reference frame in
which the magnetic field rotates or oscillates, for instance in
an induction machine or in a transformer. An efficient
transient-type solver can still be obtained by assuming the
solution can be written in the following complex form, with ω
the field pulsation [6]:

( ) ( ) tjetAtA ω⋅= (4)

This is an extension of the assumption behind the time-
harmonic method [7], but now we assume the solution part in
the complex phasor form changes in time. Eq. (4) splits the
fast dynamics at the studied frequency (the exponential terms)
and the slow dynamics in the phasor. The phasor can be
interpreted as complex ‘envelope’ of the fast oscillating
harmonic function (Fig. 1).
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Fig. 1. A function with fast (oscillation) and slow dynamics (envelope
evolution). The function envelope evolution is to be simulated.

Assuming the source in (1) is written in the form of (4)
and neglecting the permanent magnetisation, this leads to:
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This equation is transformed into FEM equations using
the Galerkin method. The time derivative is replaced by a
finite difference with the ∆t of the thermal equation:

III. THERMAL FIELD ANALYSIS

Although the thermal field calculation seems more or less
obvious, the rotation has to be dealt with as well. This reflects
in the spatial distribution of the losses and the different radial
heat paths. To get around this problem, one can use two
models using different reference frames. One model uses a
stator-fixed frame, while the other uses a rotor-fixed frame
(see [9] for the background of this methodology). The thermal
field equation is:
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t
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with: T : Temperature



q : Total losses
k : Thermal conductivity
ρ : Mass density
c : Specific heat

To model the cooling, these models are extended with
convective boundary conditions. Air gaps are generally
represented by means of an equivalent heat-conducting
material. The equivalent conductivity is calculated
considering the thermal resistance obtained by applying two
convective transfers in series. The convective heat
coefficients are calculated considering the state of the air flow
in the air gap. Convection parameters for the inner parts are
difficult to determine. Equivalent anisotropic materials or
special element relations are used to model thermal contact
resistances and thin insulation layers [9].

IV. FIELD INTERACTIONS

A. Thermally dependent material characteristics

Generally, for the temperature range in which the
majority of electrical machines operate, two types of
thermally dependent material characteristics have to be taken
into account:
• electrical conductivity : within the finite element, the

value is updated using the temperature change and the
thermal coefficient.

• permanent magnet characteristic : the shift of the
characteristic is used to implement the change of the
magnetization in (1). The point of irreversible
magnetization alters as well.

B. Loss calculations

Several types of losses are to be included in the right-
hand side term of the thermal equation, each with a different
specific calculation method:
• Joule losses : This loss density is computed by

calculating the joule loss integral in every conductor
finite element. Eddy current contributions may be
present.

• Iron losses : These have different components (hysteresis,
eddy current and excess losses) and are calculated by
numerically integrating, for every finite element,
analytical expressions using the field changes during one
rotation [11]. These values are calculated based on the
flux loci in the elements (Fig. 2), obtained from the set of
semi-static magnetic models, each rotated over a small
angle (Fig. 3). These FEM calculations are performed
relatively fast, since the saturation can be ‘frozen’
yielding a linear problem. Hence, fast rotational effects
are counted in.

• Permanent magnet Joule losses : These occur in
electrically conductive surface mounted permanent
magnet blocks and are calculated under the simplifying
assumption that they do not affect the global magnetic

field, so the first term in (2) can be reconstructed in the
permanent magnet finite elements, based on the same set
of semi-static magnetic models at consecutive rotation
angles [12], already made for the iron loss calculation.
This approach takes into account the higher field
harmonics on the smallest time scale.

 
 Fig. 2. Reconstructed trajectories (loci) of the endpoints of the magnetic
field vector in different locations in a tooth of a partially loaded PMSM.

 

 
 Fig. 3. Two meshes used in the procedure to calculate the iron and
permanent magnet eddy current losses.

IV. COUPLED SIMULATION

The actual calculation of the coupled field problem is
best computed using ‘block iteration’ algorithms (Fig. 4).
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Fig. 4. Coupled problem computation flow chart.



These are preferable over Newton-type methodologies
[13] as Newton algorithms require the knowledge of all time
derivatives, which cannot be easily expressed, and the
obtained matrix systems to be solved are asymmetric and ill-
conditioned and therefore require expensive solver
algorithms.

V. APPLICATIONS

To illustrate the methodologies described above, two
examples are included. At first, a permanent magnet
synchronous machine is calculated using a fixed reference
frame for the magnetic field calculation [14]. Secondly, the
approach for the oscillating or rotating AC fields is
demonstrated for a three-phase transformer [15].

A. Permanent Magnet Synchronous Machine

To study the dynamic performance of a 45 kW 6-pole
PMSM designed for use in an electrical vehicle, a transient
coupled thermal magnetic simulation is developed. This
machine is designed to have a water cooling system and
contains conductive, temperature sensitive NdFeB permanent
magnet pieces fixed to the rotor surface. The mesh used for
the magnetic field calculation is shown in Fig. 3. Fig. 5
represents the magnetic field.

Fig. 5. Magnetic field solution of the PMSM in loaded conditions.

Two thermal models, with stator and rotor reference
frame are used in the thermal calculation (Fig. 6). They
contain appropriate contact resistance and insulation
representations. The air gap convection parameter is
determined using semi-empirical correlations. The losses
were determined using the method described above.

Fig. 6 PMSM thermal solution - stator and rotor frame model; used to update
the winding electrical conductivity permanent magnet data.

To validate the coupled model, it was tested in different
circumstances. In a first test, the machine is used as a water-
cooled generator driven by a DC-motor at 1500 rpm. Its
winding is connected to a resistive load. All types of losses
are considered in the motor. The iron losses drop about 20 %
when the iron gets hot and the permanent magnet induced
flux is weakened. The joule losses in the winding rise about
19 % due the heating. Measured temperatures are compared
to computed values (Fig. 7).
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Fig. 7. Comparison of measured and calculated winding temperature
variations in water-cooled loaded conditions (the variance coming from
redundant sensors is indicated).

In this graph, a good agreement between measured and
simulated data is found. The results of an uncoupled
calculation are plotted as well, these are situated below the
coupled result, since the increased resistivity is not taken into
account, which introduces a systematic underestimation of the
losses. The variance between the coupled and uncoupled
simulation is not very large, though it represents a difference
of about 4.4 % for this limited temperature rise of merely
15 °C.

In a no-load test, the PMSM is driven by the DC-motor at
3000 rpm. The windings are open and the induced voltage is
measured. The water cooling is inactive. In this case, only
iron losses are present. The evolution of the registered
temperatures, along with the simulations is shown in Fig. 8.
The variation of the fundamental measured and induced
voltage is given in Fig. 9.
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Fig. 9. Comparison of fundamental measured and induced voltage.

The first graph indicates that the computed steady-state
temperature of the device is about 5 % higher than measured.
An explanation is found in the fact that some parasitic heat
paths are neglected. Neither the heat flux through the
mounting (the motor is not perfectly insulated from the base
plate on the test bench), nor the heat flowing out of the motor
through the rotating shaft is taken into account. A test
calculation indicates that the temperature drops to the
measured level, when it is assumed that these conductive
phenomena increase the cooling capability by 10 %. For the
measurements, the stator temperature rises a bit faster in the
beginning. This is due to the convection cooling models used,
becoming more accurate when the temperature differences are
more significant. The induced voltage follows the measured
value, which is an indirect measure of the magnet
temperature. An average change of more than 5 % of the
magnets’ remanent field is found.

B. Three-Phase Transformer

A 30 kVA transformer having 50 foil conductors in the
secondary winding, which are located close to the core, is
modelled in the described way. The meshes are constructed
by using adaptive refinement techniques. The real component
of the magnetic solution of the simulated short-circuit test is
shown in Fig. 10. Fig. 11(a) shows a detail of the leakage
field.

Fig. 10. Real part of the final magnetic field solution of a simulated short
circuit test.

The surrounding air and the air between the winding
blocks is replaced by convective boundary conditions. The
thermal mesh is extended with thin layer elements between
the foils, representing the insulation layers and anisotropic
materials. A detail of the thermal solution is shown in Fig.
11(b), clearly indicating the location of the hot spot in the top
of the foil winding coil.

(a) (b)
Fig. 11: Details of the magnetic and thermal field. (a) field lines of the
leakage flux passing through the foil conductors in the top the coil
associated with additional eddy currents; (b) Isothermal lines of the upper
part of a coil set; on the left the foil conductor; on the right the wire coil; the
hot spot is visible in the top of the foil pack.

To validate the transient method, measurements were
made and compared with simulations. Fig. 12 demonstrates
that there is a good correspondence. The difference between
the steady state temperature in the measurements and the
simulation, as well as the small difference in the thermal
heating time constant, are explained by the difficulty to model
the natural convective cooling in the vicinity of the coils.
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Fig. 12. Comparison of measured and calculated heating of the transformer
in a short circuit situation. The temperature near the tops on the outer side is
measured optically.

CONCLUSIONS

This paper discusses manners to deal with the large
difference in time scales encountered in the simulation of
coupled electromagnetic-thermal field problems in electrical
energy transducers. The high ratio between the largest and
smallest time constants yields numerical stiffness, which
would normally require special integration methods.

However, by reworking some of the problem modeling
aspects it is possible to separate some of the dynamic
phenomena at different time scales. In this way it becomes
possible to split up rotation or oscillation, higher-order
harmonics generating losses and the heating up of the device.



To illustrate these methodologies, the transient thermal-
magnetic computation of a permanent magnet synchronous
machine and a three-phase transformer is discussed and
compared with measurements.
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