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Abstract —The slow convergence of the Incomplete Cholesky 
preconditioned Conjugate Gradient (CG) method, applied to 
solve the system representing a magnetostatic finite element 
model, is caused by the presence of a few little eigenvalues in 
the spectrum of the system matrix. The corresponding eigen-
vectors reflect large relative differences in permeability. A 
significant convergence improvement is achieved by supply-
ing vectors that span approximately the partial eigenspace 
formed by the slowly converging eigenmodes, to a deflated 
version of the CG algorithm. The numerical experiments 
show that even roughly determined eigenvectors already 
bring a significant convergence improvement. The deflating 
technique is embedded in the simulation procedure for a 
permanent magnet DC machine. 

 

Keywords —Deflation, finite element method, iterative meth-
ods, Krylov subspace, spectrum, electrical machines. 

Introduction 

Finite element simulation is embedded in design and 
optimisation procedures for electromagnetic devices. Fi-
nite element simulation commonly provides the ability to 
consider arbitrary geometries, nonlinear materials and 
eddy currents effects. An important drawback compared to 
smaller models such as magnetic equivalent circuits and 
models coming from point mirroring techniques, are the 
huge computational expenses, especially if 3D simulation 
is required. 

As the finite element calculation is usually part of a 
wider electromagnetic simulation procedure, often smaller 
models of the same devices already exist. The finite ele-
ment model is, however, built and solved starting from 
scratch. In this paper, the availability of a small-sized al-
ternative modellisation is exploited to enhance the conver-
gence of the iterative solver within the finite element simu-
lation software. 

Magnetostatic model 

A discrete 2D magnetostatic model is represented by the 
system of equations 

 . (1) bAx =

Here,  and b  result from discretising the magnetostatic 
partial differential equation 

A

 ( ) zz JA =∇ν⋅−∇  (2) 

with  and  the z-components of the magnetic vector 
potential and the current density and  the reluctivity, by 
e.g. linear triangular finite elements (Silvester, 1990).  is 
the vector of the nodal magnetic vector potentials.  is 
symmetric and positive definite and n denotes its dimen-
sion. 
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Convergence of the iterative solution 

As the system matrix is sparse and the spectral proper-
ties of the system matrix are well-known, Krylov subspace 
iterative methods are appropriate (Saad, 1996). The Con-
jugate Gradient (CG) method is suited for symmetric, posi-
tive definite systems. These methods search for the solu-
tion within the Krylov subspace, which dimension is aug-
mented by one in each iteration step. Theoretically the ex-
act solution is reached after n iteration steps. However, it is 
expected to reach an acceptable accuracy in much fewer 
steps. The convergence history of CG applied to an exam-
ple model is plotted in Fig. 1. The error is bound by 
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with  the exact solution and  the approximative so-
lution at iteration step . The condition number 

x )(kx
k K  is 

 
min

max
λ
λ

=K , (4) 

with maxλ  the largest and minλ  the smallest eigenvalue of 
. Therefore, it is possible to obtain information about 

the convergence of Krylov subspace solvers by interpret-
ing the spectrum of the system matrix (Fig. 2). 
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Fig. 1: Convergence histories of ICCG, D(3)ICCG, 
D(6)ICCG, D(13)ICCG, D(13*)ICCG and D(13**)ICCG. 
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Fig. 2: Spectrum of . A
 
 
 

Preconditioning 

The convergence of a Krylov subspace iterative method 
can substantially be enhanced by applying an appropriate 
preconditioner M  to the system (Saad, 1996): 

 . (5) bMAxM 11 −− = 10
-1

Here, as a preconditioner, an Incomplete Cholesky (IC) 
factorisation is applied. The IC factor  is computed in 
advance keeping the same sparsity pattern as . The pre-
conditioner is M . The convergence and the spec-
trum of the preconditioned system are are denoted by 
ICCG in Fig. 1 and Fig. 3 respectively. The eigenvalues of 
the preconditioned system are much more clustered when 
compared to those of the original system. The outlayers are 
also located more at the center of the spectrum. Therefore, 
the condition number improved (Table I). Some outlayers 
still remain isolated from the rest of the spectrum. The 
presence of these few eigenmodes have a harmful influ-
ence on the condition number and thus the convergence of 
CG. If these eigenmodes can be removed from the system 
spectrum, a far better convergence is expected. Therefore, 
a closer look at these eigenmodes is motivated. 
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The origin of these slowly converging eigenmodes is to 
be found in the properties of the differential model itself. 
The flux patterns corresponding to the eigenvectors are 

shown in Fig. 4. They reflect long range effects and large 
relative differences in permeability present in the model. 
The eigenvectors represent the magnetic fields formed by 
an independent set of possible rotor excitations. In Fig. 3a, 
it is seen that about 13 eigenvalues are isolated from the 
rest of the spectrum. As a consequence, it is plausible to 
ascribe the slowly convergence to the slotting of the motor. 

error 

CG 

 
 
 

D(3)ICCG TABLE I: CONDITION NUMBERS AND ITERATION COUNTS. D(13)ICCG 
D(6)ICCG ICCG

Solver System Matrix Condition 
Number 

Number of 
Iterations 

CG A  2.92e7 264 
ICCG AM 1−  870 84 
D(3)ICCG APM T

3
1−  308 52 

D(6)ICCG APM T
6

1−  135 39 

D(13)ICCG APM T
13

1−  51.2 28 

D(13*)ICCG APM T
*13

1−  66.9 31 

D(13**)ICCG APM T
**13

1−  73.9 35 

D(13*)ICCG D(13**)ICCG 

iteration steps 

 
minλ maxλ
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Fig. 3: Spectra of the systems corresponding to (a) ICCG, 
(b) D(3)ICCG, (c) D(6)ICCG, (d) D(13)ICCG and 

(e) D(13*)ICCG. 
 



     

     

Fig. 4: Flux patterns corresponding to the eigenvectors 
related to the four smallest eigenvalues of . AM 1−

 

Exact Deflation 

To annihilate the effect of m slowly converging eigen-
modes, the m corresponding eigenvectors are removed out 
of the space in which the solution is searched. If the col-
umns of a matrix  span an approximative eigenspace 

, the projector 
V

V

 ( )T1 AVVEIP −−=  (6) 

with  projects a vector  to the vector  

into V , the space orthogonal to V  (Vuik, 1999). Apply-
ing  to u  yields the vector 

( ) VAVE T=
⊥

P−

u Pu

I ( )uPI −  contained in V . 
The projector defines a decomposition of the n-

dimensional search space into the m-dimensional partial 
eigenspace V  and the -dimensional deflated eigen-

space . The solution of (1) consists of a part 
and a part . The part contained in the par-

tial eigenspace is computed as 

( mn −

⊥∈V

)
⊥V

V∈1x 2x

 . (7) bVVEx T1
1

−=

This calculation is inexpensive because  is of dimension 
m and usually only a few eigenvectors are selected for de-
flation. The part orthogonal to V  is solved from 

E

 . (8) bPMAxPM T1
2

T1 −− =

System (8) is singular. However, the Krylov subspace 
solver is capable of solving such systems if the righthand-
side is contained within the range of the system matrix 
(Kaasschieter, 1988), as is here: 

 ( )APMbPM T1T1 Ran −− ∈ . (9) 

The convergences of the preconditioned systems de-
flated by 3,6 and 13 eigenvectors are denoted by 
D(3)ICCG, D(6)ICCG and D(13)ICCG respectively 
(Fig. 1). The spectra are collected in Fig. 3. The slowly 
converging eigenvalues are projected upon zero (not visi-
ble in Fig. 3 because of the logarithmic axis) and indicate 
the singularity of the deflated systems. The improvement 
of the condition number and the convergence is also clear 
from Table I. 

Approximative Deflation 

The previous section assumes that the eigenvectors re-
lated to the small converging modes are available. Deter-
mining one eigenvector, however, is as expensive as solv-
ing the original linear system. As a consequence, the ap-
proach presented until now, is not advantageous. 

As already mentioned, the eigenvectors have typical 
shapes corresponding to the flux patterns that are com-
monly sketched by the design engineer intuitively. It is 
possible to construct, based on geometrical reasoning, a 
few base vectors of eigenspace approximating the exact 
partial eigenspace V . The determination procedure for 
these vectors is easily embedded within software comput-
ing the magnetic reluctance required for a magnetic 
equivalent circuit model. The crucial assumption here is 
the fact that these vectors not only do approximate the ei-
genvectors of  but also those of . This resem-
blance is implicitly verified by the numerical experiments 
below. 

A AM 1−

The convergence of the approximately deflated system, 
denoted by D(13*)ICCG and its spectrum are plotted in 
Fig. 1 and Fig. 3  respectively. The numerical experiments 
indicate that even a rough determination of the partial ei-
genvector space suffices to enhance the convergence of the 
finite element solution substantially. 

Application 

The deflated solver is applied to simulate a permanent 
magnet DC motor. Two radially magnetised permanent 
magnets excite a magnetostatic field in the air gap of the 
device. DC currents through the windings of the rotor 
cause armature reaction (Fig. 5). 

The design of the device can be based on semi-
analytical formulae. Correction factors, e.g. the Carter fac-
tor dealing with the slotting of the machine, are computed 
relying upon finite element models whereas the overall be-
haviour of the device is simulated by analytic expressions. 
While computing the Carter factor, the same reduced 
model of one slot pitch is used to compute a local flux as-
sociated with the excitation of one rotor slot (Fig. 6). This 
pattern is mirrored and rotated to obtain 13 independent 
base vectors spanning a space that is approximating the 
slowly converging eigenspace of M  (Fig. 7). The lo-
cal support of these base vectors enable an efficient appli-
cation of the projector within the CG algorithm. The same 
projector is used to deflate the systems associated with the 
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different Newton steps dealing with the nonlinear material 
characteristics. 

 

Fig. 5: Magnetic flux line plot of a permanent magnet DC 
machine. 

 

 

Fig. 6: Reduced finite element model of one slot. 

 

Fig. 7: Magnetic flux lines corresponding to a base vector 
of an approximative eigenspace of the system matrix. 
 

13 eigenvectors computed by a geometrical algorithm 
determining flux paths through electromagnetic devices 
and computing magnetic reluctances, define a more rough 
projection . Also for this deflation, the convergence 
enhancement is substantial (Fig. 1 and Table I). 
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Conclusions 

After standard preconditioning, a few relatively small 
eigenvalues remain in the spectrum of the system matrix, 
causing slow convergence of the Conjugate Gradient itera-
tive method. Defining a projector subtracting the subspace 
spanned by the corresponding eigenvectors from the Kry-
lov subspace, results in a deflated algorithm with improved 
convergence properties. The eigenvectors have a physical 
meaning. Using an alternative rough modellisation tech-
nique, it is possible to construct a base for a space ap-
proximating the partial eigenspace. The approximately de-
flated Conjugate Gradient algorithm still establishes a 
good convergence. 
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