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ABSTRACT – The magnetic and mechanical finite element systems are combined into one magnetomechanical system. 
Investigating the coupling terms results in a finite element expression for the magnetic forces (Lorentz force and reluctance 
force) for both the linear and nonlinear case. The material deformation caused by magnetostriction is represented by an 
equivalent set of mechanical forces, giving the same strain to the material as magnetostriction does. The resulting 
magnetostriction force distribution is superposed onto other force distributions (external mechanical forces, magnetic forces) 
before starting the mechanical deformation or vibration analysis. This procedure is incorporated into a weakly-coupled 
cascade solving of the magnetomechanical problem. 
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1. INTRODUCTION 
 
The main source of acoustic noise radiated by electric machines are the radial stator vibrations. Although this deformation is 
mainly caused by radial reluctance forces on the stator teeth (Maxwell stresses on the air-iron interface), magnetostriction 
effects can also contribute significantly to the deformation [1]. In order to be able to compute stator deformations, a local 
force expression is required. Here, based upon the coupled magnetomechanical finite element model, a nodal force 
expression is derived which covers both Lorentz forces and Maxwell stresses on the air-iron interface. The magnetostriction 
effect is represented by a set of nodal forces giving rise to the same deformation as magnetostriction does. The λ(B) 
magnetostriction characteristic of the material (magnetostrictive strain λ as a function of flux density B) is assumed to be 
known. The magnetostriction forces are determined for both isotropic and anisotropic materials, and for both plane stress and 
plane strain analysis. 
 
2. THE COUPLED MAGNETO-MECHANICAL SYSTEM 
 
Both magnetostatic and elasticity finite element methods are based upon the minimization of an energy function. The total 
energy E of the electromechanical system consists of the elastic energy U stored in a body with (small elastic) deformation 
a [2] and the magnetic energy W stored in a linear magnetic system with vector potential A [3]: 
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where K is the mechanical stiffness matrix and M is the magnetic ‘stiffness’ matrix. Considering the similar form of these 
energy terms, the following system of equations represents the numerically-coupled magnetomechanical system: 
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where T is the magnetic source term vector and R represents external forces other than those of electromagnetic origin. 
Setting the partial derivatives of the total energy E with respect to the unknowns [A  a]T to zero, the combined system (2) 
with T=0, R=0 is retrieved: 
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giving the coupling terms C and D. The coupling term D can be used to represent magnetostriction effects in a numerically  
strong coupled analysis [4], but will not be considered here, so that D=0 and T=MA (magnetostriction will be introduced 
further on in a numerically weak coupling approach). Rearranging the mechanical equation (4) into 
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reveals a means to calculate the forces Fmag internal to the magnetomechanical system. These magnetic forces are computed 
from vector potential A and the partial derivative of the magnetic stiffness matrix M with respect to deformation a. This 
procedure to obtain the magnetic forces Fmag is equivalent to applying the virtual work principle to the magnetic energy W for 
a virtual displacement a: 
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where vector potential A has to remain unchanged (constant flux). For the non-linear case, the matrix M is a function of the 
magnetic field and displacement: M(A,a). The magnetic energy W is now given by the integral 
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where T=MA and MT=M was used. The force expression (6) now becomes 
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Note that adding a constant to A indeed does not change the value of the integrals in (7) and (8). For D=0, the initial coupled 
system (2) can therefor be rearranged into the decoupled system 
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and solved in a cascade approach. 
 
3. THE PARTIAL DERIVATIVE ∂∂∂∂M/∂∂∂∂a 
 
The derivation ∂M/∂a is illustrated for the nonlinear case, using first order 2D triangular elements for simplicity. For the 
magnetic element matrix [5] 

 ][
4 jiji

e
ij ccbbM +

∆
ν= , (10) 

with reluctivity ν, element area ∆ and the well-known shape function coefficients a1=x2y3–x3y2, b1=y2–y3, c1=x3–x2. The 
partial derivative of (10) with respect to u1 (ai=[ui vi]T) is 
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Similar expressions are found for the partial derivative of Me with respect to alternative displacements (u2, u3, v1, v2 and v3). 
The third term in (11) requires some attention. The reluctivity ν depends on flux density B according to the saturation 
characteristic of the material. In the finite element code used here, the material characteristic is stored in ν(B2) format [3][5]. 
For first order triangles, B2 is given by 
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where bi and ci are the common shape function coefficients and Ai is the vector potential on node i. Since in (12) only c2 , c3 
and ∆ depend on u1 , the third term in (11) can be calculated explicitly: 
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In (13c), all factors independent of B2 are gathered in Gu1. The actual value of dν/dB2 is retrieved from the material 
characteristic. The factor dν/dB2 acquires significant values only in elements that are heavily saturated; in these elements the 
third term in (11) becomes an important force component and must not be neglected. 
In the non-linear expression (8), the integral values of the three terms in (11) are required. The integrals are calculated per 
element (A0=[A1,0 A2,0 A3,0]T) using A=tA0, so that dA=A0dt, B2= 2

0B t2 and d(B2)=2 2
0B tdt. For the first two terms in (11), the 

integral counterpart is found by replacing ν by the following integral: 
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where B0 is the actual value of the flux density in the element under consideration. The integral of the third term in (11) 
reduces to 
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since νe
ijM is short for [bibj+cicj]/4∆ and does not depend on ν or A. Using (13c), the integral in (15) becomes 
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where ν* is the reluctivity in the linear part of the material characteristic. From the integral in (18) it is seen that the third 
term in (11) is linked to the co-energy in the system, while the first two terms of (11) are linked to the energy integral in (14). 
The relation between both energies is given by  
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so that only one integral needs to be evaluated. Similar expressions are found for the partial derivatives with respect to the 
other displacements (u2, u3, v1, v2 and v3). 



 

 

 
4. RELUCTANCE AND LORENTZ FORCES 
 
Expression (8) for the force Fmag was derived in a general fashion, 
not focussing particularly on permeability interfaces or regions with 
imposed current. Any permeability interfaces will contribute greatly 
to the ∂M/∂a summation over a node that lies on the interface and 
will yield the same local force value as applying Maxwell stress on 
the interface does. Elements with current density will affect the 
vector potential profile in such a way that, when (8) is used, exactly 
the Lorentz force acting on that element is obtained. Expression (5) 
(the linear version of expression (8)) is therefor equivalent to the 
well-known force expression [6] 
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where the second term can also be written as [7] 
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where bn is the normal component of flux density and ht is the 
tangential component of magnetic field at the interface between 
materials with permeability µ0 and µ. (n is the unit normal vector). 
Expression (8) is equivalent to (20) since they can both be derived 
using the virtual work principle. 
 
Fig.1a shows a conductor with current I in a uniform external 
magnetic field Be , but shielded by a ring of magnetic material. The 
Lorentz force per meter on the conductor without shielding is 
Ftot = I Be. With shielding the Lorentz force is Fs = I Bs where Bs is the 
(much smaller) homogeneous field at the conductor after shielding. 
Fig.1b shows the magnetic field using a very large number of flux 
lines so that the small field at the conductor becomes visible. The 
field shown in Fig.1b is the sum of the homogeneous field Bs and the 
field of the conductor current itself. Fig.2 shows the result of force expr
the conductor (inset). The sum of the nodal forces on the conductor gives
shielding ring gives FM = Ftot – Fs = I Be – I Bs so that the total force on th
 
Fig.3 shows the equipotential lines of the flux in a C-core with an airga
with 104 Ampèreturns (in order to obtain heavy saturation). Fig.4 sho
applying the force expression (8) to the magnetic field in the C-core. Th

a)         b)  

Fig.1 a) Conductor shielded from external field by 
permeable ring, b) Magnetic field around conductor.
 
Fig.2 Force distribution for shielding problem 

obtained using (8), inset: detail of force distribution 
on conductor. 
ession (8) with a more detailed view of the forces on 
 exactly Fs = I Bs. The sum of the nodal forces on the 
e ring-conductor system again gives Ftot [8, p.368]. 

p in the right leg and excited by a coil on the left leg 
ws the corresponding force pattern obtained when 
e forces on the airgap edges represent the reluctance 

 

 
Fig.3 Magnetic field in iron C-core (excited by 

coil on left leg, airgap in right leg). 
a)        b)         c)
Fig.4 Magnetic forces on iron C-core (small horizontal airgap in the right leg) found using (8) and (11): 

a) total force pattern, b) linear part of force pattern (µ considered constant), c) nonlinear part of force pattern. 



 

 

forces. Fig.4a shows the total force pattern, while Fig.4b shows the force pattern obtained using only the first two terms in 
(11). This is equivalent to keeping the permeability of the material constant (for linear materials, expression (5) can be used). 
In Fig.4a and 4b, the forces on the airgap edges are due to the bn term in (21), while the forces on the sides of the C-core are 
due to the ht term in (21). Fig.4c shows the contribution of the third term in (11) to the force pattern (magnified by a factor 2). 
It can be seen that the saturated areas (left leg is more saturated than upper and lower leg) want to increase their cross-section. 
 
5. MAGNETOSTRICTION FORCES 
 
Effects where there is a mutual influence between the 
mechanical deformation or stress and the 
magnetisation µ0M in the material, are called 
magnetomechanical effects. The most important is the 
magnetostriction effect λ(B), pertaining to the strain λ 
of a piece of material due to its magnetisation. The 
inverse magnetostriction effect is the dependency of 
the magnetisation µ0M on the stresses σ occurring in 
the material. Since stress influences magnetisation, it 
will also influence the magnetostriction itself and turn 
the λ(B) characteristic into a λ(B,σ) dependency [9]. 
Usually there is no relevant volume change due to 
magnetostriction [10]. 
 
Magnetostriction is implemented in the coupled system by a force distribution Fms that is added to R and Fmag in (9). By 
magnetostriction forces we indicate the set of forces that induces the same strain in the material as magnetostriction does. 
This approach is similar to how thermal stresses are usually taken into account [11]. To evaluate thermal stresses, the thermal 
expansion of the free body (no boundary conditions) is calculated based upon the temperature distribution, and then the 
thermal stresses are found by deforming the expanded body back into its original shape (back inside the original boundary 
conditions). To calculate magnetostriction forces, the expansion of the free body due to magnetostriction is found based upon 
the magnetic flux density, and the magnetostriction forces are found as the reaction to the forces needed to deform the 
expanded body back into the original boundary conditions. 
 
For finite element models, this can be performed on an element by 
element basis, where the midpoint of the element (the centre of 
gravity) can be used as a locally fixed point. The magnetostrictive 
deformation of the element, i.e. the displacement of the three nodes 
with respect to the midpoint, is found using the element's flux 
density Be and the λ(B) characteristic of the material. Fig.5a shows 
the original element (solid line) and the deformed element (dashed 
line) after applying the magnetostrictive strain λ(Be) keeping the 
centre fixed. The magnetostriction forces Fms (Fig.5b) are the set of 
forces inducing the same deformation. 
 
3.2 Strain for isotropic materials 
 
Fig.6 shows a typical magnetostriction characteristic for isotropic 
3% SiFe (solid lines) as a function of tensile stress. For isotropic 
materials, the local xy-axes of the element are chosen so that the x-
axis coincides with the flux density vector B. Usually magneto-
striction will leave the volume unchanged [10], so that the strains in 
the local frame are given by 
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where λ=λ(B) is the magnetostrictive strain in the direction of B 
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and λt is the magnetostrictive strain in the transverse directions. In a 2D plane strain analysis, the thickness (z-direction) of 
the material has to remain constant and an additional z-stress needs to be applied in order to obtain λz=0. This adjusts the 
strains in (22) to 
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where ν is the Poisson modulus of the material. 
 
3.3 Strain for anisotropic materials 
 
Fig.6 shows a typical magnetostriction characteristic for anisotropic M330-50A steel (dashed lines). As an approximation of 
the anisotropic behavior, the flux density vector is decomposed into a Bx and a By component in the element’s local xy-axis, 
arranged so that the x-axis coincides with the rolling direction, and the y-axis with the perpendicular direction. The rolling 
direction curve )(RD Bλ  is then used with Bx as input, and the perpendicular direction curve )(PD Bλ  with By as input, giving 
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Depending on the actual anisotropic behavior of the material, a more accurate strain description can be used, e.g. taking 
magnetostrictive shear xyλ  into account [12]. A similar correction as in (23) can be made for the plane strain case. 
 
3.4 Displacement and force 
 
Still working in the local xy-axes, the element's strains λe

x and λe
y are converted into three nodal displacements 

ae
ms,i=(ae

x,i , ae
y,i ), i=1,2,3 considering the midpoint of the element (xe

m, ye
m) as fixed: 

 














λ

λ















−

−
=















e
t

e

e
mi

e
mi

iy

ix

yy

xx

a

a

,

,
, i=1,2,3 , (25) 

with (xi,yi) the co-ordinate of node i. The mechanical stiffness matrix allows us to convert the displacements ae
ms into a set of 

forces using 
 e

ms
ee

ms aKF = . (26) 

This procedure is performed element by element; it cannot be done for the whole mesh at once, because the displacements 
ae

ms due to the different elements surrounding a node, cannot be summed. The resulting nodal forces Fe
ms however, can be 

summed. As a result, the distribution of magnetostriction forces Fms is obtained and added to the other force distributions: 
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The magnetostriction forces can now be added to any other set 
of forces to give the total force distribution acting on the 
device, which can be readily used for deformation or vibration 
calculation [13]. 
 
Note that due to the fact that magnetostriction usually leaves 
the volume unchanged, the magnetostrictive 'Poisson modulus' 
is νms=0.5, while the mechanical Poisson modulus of the 
material is about ν=0.3. This means that, next to a set of forces 
parallel to B, there will always be a set of forces perpendicular 
to B (Fig.7). 

B

 
Fig.7. The set of forces (right) representing the strain 

caused by magnetostriction due to the magnetic field B
(left), consists of a set forces parallel to B and a set 

forces perpendicular to B. 



 

 

6. EXAMPLE: 6-POLE SYNCHRONOUS 
MACHINE STATOR 

 
Fig.8 shows the magnetic field in one pole of a six-pole 
synchronous machine. Bmax in the teeth is 1.26 T 
corresponding to λ = 2.3 µm/m for 3% SiFe with 
1 MPa tensile stress. Fig.9 shows the magnetostriction 
forces on the stator for the magnetic field of Fig.8: 
Fig.9a for a stator of isotropic non-oriented 3% SiFe 
and Fig.9b for a stator of anisotropic M330-50A (both 
materials were modeled with Young modulus 
E = 2.2 1011 Pa and ν = 0.3). In the areas of high flux 
density in the stator, there are magnetostriction forces 
parallel to the flux lines and also a set of 
magnetostriction forces perpendicular to the flux lines, 
both seeking to increase the circumference of the 
stator. In the anisotropic case, the general 
magnetostriction force pattern remains the same, but the 
forces appear slanted. Fig.10 repeats Fig.9a but also 
shows the reluctance forces Fmag for the magnetic field 
of Fig.8. It can be seen that Fms and Fmag are of the same 
order of magnitude (the size of the nodal force vectors 
on the teeth tips is 25 N). 
 
7. CONCLUSION 
 
The mechanical and magnetic finite element system are 
combined into one magnetomechanical system. This 
results in a finite element based expression for nodal 
forces representing both Lorentz forces and reluctance 
forces (Maxwell stresses on material interfaces), for 
both linear and nonlinear materials. The magneto-
striction of the material is taken into account by a force 
distribution (magnetostriction forces) that induces the 
same strain into the material as magnetostriction does. 
This is done for both isotropic and anisotropic 
materials. These force distributions can be added to 
other force distributions to start a subsequent 
mechanical deformation or vibration analysis. 
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Fig.9 Magnetostriction forces on stator for 
a) isotropic non-oriented 3% SiFe, 
b) anisotropic M330-50A. 
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