
 

 

Abstract–A strong coupling between the magnetic and the mechanical 
finite element model is presented. The two coupling terms represent 
magnetic forces and magnetostriction respectively. The coupled system 
is solved using a fixed point iteration (successive substitution) with 
relaxation. The influence of magnetostriction and saturation on 
convergence is investigated. Convergence is obtained by first solving the 
problem with linear material characteristic and then gradually 
increasing the nonlinearity of the material. 
 
Index Terms–coupled magnetomechanical problems, magnetostrictive 
materials, numerical methods. 
 

I.  INTRODUCTION 

he investigation of noise and vibrations of electrical 
machinery is based upon the coupling between the 

magnetic field and the mechanical stator deformation. This 
coupling is usually effected using reluctance forces (Maxwell 
stress). Since the deformations occurring are small compared 
to the machine's dimensions, there is no feedback to the 
magnetic system. Stator deformations are caused not only by 
reluctance forces, but also by magnetostriction of the stator 
yoke [1]. Magnetostriction will be the main cause of noise for 
transformers, inductors and other devices without airgap. The 
magnetostrictive deformations can be calculated based upon 
the magnetic field and if these deformations are of the same 
order of magnitude as the deformations caused by the 
reluctance forces, again there is no need for feedback to the 
magnetic system. 
 However, as soon as magnetostriction becomes important, 
which is the case in actuators using materials with giant 
magnetostriction, the magnetic field will be affected and the 
coupling can no longer be implemented without feedback. 
The feedback can be provided by using an iterative (weak) 
solving scheme with the magnetic and mechanical finite 
element system separated, or the two physical systems can be 
captured in one magnetomechanical matrix which is solved at 
once. The latter approach is the one adopted here. Next to the 
magnetisation characteristic of the iron, the magnetostriction 
characteristic λ(B) is needed. The term magnetostriction 
relates to this λ(B) dependency, while the term inverse 
magnetostriction relates to the dependency of permeability on 
mechanical stress [2]. This latter effect is not considered here 
but was built into a strong coupling in [3]. 

II.  THE MAGNETOMECHANICAL SYSTEM 

The total energy E of the magnetomechanical system is the 
sum of the elastic energy U and the magnetic energy W: 
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where K is the mechanical stiffness matrix, M is the magnetic 
'stiffness' matrix, a=[u v]T is mechanical 2D displacement and 
A is the z-component of magnetic vector potential. These 
three unknowns on one node are gathered in one vector 
[A a]T. This suggest the following combination of the 
magnetic finite element system MA=T and the mechanical 
finite element system Ka=R: 
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where T is the magnetic source term vector and R represents 
external forces. The mechanical system is assumed to always 
stay in its linear range. The coupling term C is related to the 
magnetic forces (both reluctance forces and Lorentz forces) 
by 
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for linear magnetic systems and 
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for nonlinear magnetic systems [4]. The magnetic stiffness 
matrix M, which is a function of mesh geometry x and 
material permeability µ, becomes a function of displacement a 
when x=x0+a is used instead of x=x0. When magnetostriction 
is neglected (D=0), then the system (2) can be decoupled into 
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and solved using a cascade approach. The coupling term D is 
related to the magnetostriction effect but cannot capture it 
completely. The deformation caused by magnetostriction can 
be represented by a set of magnetostriction forces, as 
discussed in Section III. The influence of magnetostriction on 
the magnetic field will be considered in Section IV. 

III.  MAGNETOSTRICTION FORCES 

Magnetostriction is built into the system using a force 
distribution Fms that is added to R and Fmag in (5). By 
magnetostriction forces we indicate the set of forces that 
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induces the same strain in the material as magnetostriction 
does. This approach is similar to how thermal stresses are 
usually taken into account [5]. To evaluate thermal stresses, 
the thermal expansion of the free body (no boundary 
conditions) is calculated based upon the temperature 
distribution, and then the thermal stresses are found by 
deforming the expanded body back into its original shape 
(back inside the original boundary conditions). To calculate 
magnetostriction forces, the expansion of the free body due to 
magnetostriction is found based upon the magnetic flux 
density, and the magnetostriction forces are found as the 
reaction to the forces needed to deform the expanded body 
back into the original boundary conditions. 
 For finite element models, this can be performed on an 
element by element basis, where the midpoint of the element 
(the centre of gravity) can be used as a local fixed point. The 
magnetostrictive deformation of the element, i.e. the 
displacement of the three nodes with respect to the midpoint, 
is found using the element's flux density Be and the λ(B) 
characteristic of the material, as is explained in detail in [6]. 

The element's strains λe
x and λe

y are converted into three 
nodal displacements ae

ms,i=(ae
x,i , ae

y,i ), i=1,2,3 considering the 
midpoint of the element (xe

m, ye
m) as fixed: 
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with (xi,yi) the co-ordinate of node i. The mechanical stiffness 
matrix allows us to convert the displacements ae

ms into a set of 
forces using e

ms
ee

ms aKF = . This procedure is performed 
element by element; it cannot be done for the whole mesh at 
once, because the displacements ae

ms due to the different 
elements surrounding a node, cannot be summed. The 
resulting nodal forces Fe

ms however, can be added. As a result, 
the distribution of magnetostriction forces Fms is obtained: 
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IV.  INFLUENCE OF MAGNETOSTRICTION 
ON THE MAGNETIC FIELD 

The coupling term D in (2) is related to magnetostriction. In 
analogy with the term CA, which is related to the change in 
magnetic energy W due to a change in displacement, the term 
Da is linked to the change in elastic energy U due to a change 
in vector potential (with the corresponding change in 
magnetic field), but with deformation held constant: 

Da ~ 
A
U

∂
∂  (8) 

where ~ instead of = anticipates to the fact that ∂U/∂A will 
turn out to have terms independent of a. 

Imagine an element with deformation a0 and flux density 
B0. When the flux density in the element increases to B0+∆B, 
the free element expands to a0+∆a due to magnetostriction 
(no external stresses need to be applied, so ∆U=0). In order to 
find the elastic energy change ∆U due to ∆B but for constant 

deformation, the element needs to be shrunk back to its 
original deformation a0. The external work done to go back 
from a0+∆a to a0 is stored in ∆U and allows us to find an 
analytical expression for ∆U / ∆B in (8). 

For a finite element of isotropic material under plane stress, 
∂U/∂A is found analytically to be 
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where ∆ and t are element area and thickness and E and ν are 
Young and Poisson modulus. Expanding the area ∆ in terms 
of mesh co-ordinates x0 and deformation a (linked by x=x0+a) 
as 
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expression (9) can be rewritten as 
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Since the deformation causing noise is much smaller than the 
size of the finite elements, we have a<<x0 and the third term 
in (11) can be neglected. The first term in (11) does not 
depend on displacement a and should be put on the right hand 
side of the coupled system (2). This term can be interpreted as 
a current density Ims representing the influence of 
magnetostriction on the magnetic field. Only the second term 
in (11) can be identified with the term Da in (2). 
Approximating (11) in this way thus gives 
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so that the magnetomechanical system (2) can now be filled in 
completely: 
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V.  SOLVING THE MAGNETOMECHANICAL SYSTEM 

The submatrices M and K are symmetric and positive definite, 
but the coupling matrices C and D are certainly not each 
other's transpose image. The magnetic matrix M depends on A 
due to the nonlinear permeability µ. The dependency of M on 
a is used only to analytically calculate the partial derivative 
∂M/∂a, but is not used to construct the matrix, since a<<x0. 
Using x0+a instead of x0 to build the matrix M does not 
significantly affect the solution of the system. The Young and 
Poisson modulus E and ν are held constant, so that the 
mechanical matrix K is constant also. The term C depends on 
permeability µ but also on its derivative ∂µ/∂B because C 
contains the partial derivative ∂M/∂a [4]. 
 The magnetomechanical system is highly nonlinear, due to 
the nonlinearity of the material characteristics µ(B) and λ(B), 
but also due to the fact that even the derivatives ∂µ/∂B and 
∂λ/∂B appear. The system (13) can now be solved directly 
using a fixed point iteration (successive substitution) with 
relaxation. 
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horizontal slider on its bottom left corner. The model depth is 
1 cm. The core material used in the model is the nonlinear 
M330-50A. The magnetostriction of the iron core material is 
assumed to be isotropic and to increase quadratically as a 
function of flux density, where the value at B=2 T will be 
used to indicate the severity of the magnetostriction. A typical 
pattern of magnetostriction forces is shown in Fig.1a and the 
corresponding magnetostriction deformation is shown in 
Fig.1b. 

Table I. Convergence as a function of magnetostriction for linear magnetic 
material (µr=1000). 

a)
s possible to construct two different meshes,

    b)

Fig. 1. a) Magnetostriction forces and b) corresponding 
magnetostrictive deformation for the iron core. 
cally suited for the mechanical problem, and one 
cally suited for the magnetic problem. However, in the 
f the strong coupling, and because the magnetic and 

nical unknowns on one node are grouped together, only 
esh is used in this approach. This means that the 
nical properties have to be provided for all materials, 
ng air. In this case, the Young modulus of air was set to 
Pa and its Poisson modulus to νair=0.1. These values 
o physical meaning, but Eair=0 cannot be used since that 
put zero values on the diagonal of K and destroy its 

eness. Eair=1 Pa is small enough compared to 
.1011 Pa so that the solution is still valid. However, due 
 small stiffness, displacement values inside the air 

 will not have any physical significance either. 
 displacement vector a is scaled using a factor f giving 
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er to control and equalise the relative order of 
ude of vector potential A and displacement a. If this is 
 case, the error estimates used while solving the system 
e dominated by the A or the a part of [A a]T and e.g. 
e magnetic solution would be valid and the mechanical 
n would be inaccurate. This scaling turns out to be 
ant when magnetostriction is important, as explained 
 on. In order to maintain the elastic energy expression 
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n (14) is scaled a second time giving 
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I.  CONVERGENCE OF THE FIXED POINT ITERATION: 
IRON CORE EXAMPLE 

bove is illustrated using the model of an iron core 
 by a current coil (Fig.1). The core is mechanically 
ined by a pin on its bottom right corner, and a 

magneto-
striction 
λ(2 T) 
[µm/m] 

relaxation 
factor 

number 
of steps 

solution 
time [s] 

0 1.0 5 3.44 
2.5 1.0 5 3.61 
25 1.0 5 3.41 

250 1.0 5 3.38 
1000 0.7 9 6.50 
1500 0.5 12 8.78 
2000 0.3 24 17.10 
2500 0.1 67 47.86 

 
 The system (16) is solved using a fixed point iteration 
(successive substitution) with relaxation. As a starting 
solution, the magnetic system is solved separately using a 
linear material with µr=1000, giving A0. This needs to be done 
only once, and the starting solution [A0 0]T can then be used 
for all other cases mentioned below. A zero starting solution 
[0 0]T will not lead to convergence for the fixed point 
iteration. Inside one substitution step, the matrix system is 
solved using a GMRES solver and takes about 150 steps for 
this model. 
 Table I gives an overview of the relaxation factors used, the 
number of steps and the CPU time (HP B1000) needed to 
reach a solution for which the relative change is smaller than 
0.1 %. The values in Table I are found using a magnetically 
linear material, in order to emphasise the nonlinearity coming 
from magnetostriction. The current in the coil is fixed to 40 A 
(5.104 A/m2). For low magnetostriction, up to 
λ(2 T) < 500 µm/m, the convergence is identical to the case 
without magnetostriction and needs only 5 substitution steps. 
Most technical materials have magnetostriction below this 
limit. Only special materials like Terfenol (used in actuators 
and linear motors based upon magnetostriction) will reach 
magnetostriction values of the order of 2000 µm/m. The 
higher the magnetostriction, the lower the relaxation factor 
than can be used to obtain convergence. 
 Table II gives an overview of the number of steps needed 
to obtain a solution as a function of the scaling factor f used in 
Table II. Displacement scaling needed to obtain convergence for linear and nonlinear magnetic core material, with and without magnetostriction. 
f 10–12 ... 10–1 100 101 102 103 104 105 ... 1016 

no ms, rel = 0.2 n.c. n.c. n.c. n.c. n.c. 37 28 35 35 35 35 M330 

λ(2T) = 2.5µm, rel = 0.2 n.c. n.c. n.c. n.c. n.c. 38 28 35 35 35 35 
no ms, rel = 1.0 1 1 1 3 4 7 5 5 5 5 5 µr=103 

λ(2T) = 1500µm, rel = 0.5 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 12 12 12 



 

 

(16) (’rel’ indicates the relaxation factor used, ‘n.c.’ stands for 
‘no convergence’). The scaling factor f is of minor importance 
when the core material is magnetically linear and has no 
magnetostriction, but is essential when the core material is 
nonlinear: convergence is obtained only for f=102 and higher. 

For the linear case with high magnetostriction, convergence 
can only be obtained for f=105 and higher. 

VII.  RELAXING THE MATERIAL NONLINEARITY 

The magnetic nonlinearity is the key factor in controlling the 
convergence of the magnetomechanical system when solved 
using a fixed point iteration. For high values of the excitation 
current, the iron will saturate and convergence is obtained by 
relaxing the material nonlinearity. The magnetic characteristic 
of the material is defined using 14 samples. Beyond the last 
point, the finite element code extrapolates the B(H) curve 
linearly. Fig.2 indicates this extrapolation and the resulting 
curves when only the first 14, 12, 11, 10, 9, 7 and 6 points of 
the original B(H) curve are used. These curves do not 
represent any physical material, but do represent a smooth 
transition from a linear magnetic material to the nonlinear 
M330. Using the [A0 0]T starting solution obtained using 
µr=1000, the problem is solved using material curve 6 (which 
uses the six first points of the original B(H) curve of M330 
and a linear extrapolation beyond H=57 A/m). The solution is 
indicated with a star on curve 6 in Fig.2. This solution is then 
used as a starting solution for the same problem but with 
material curve 7, and so on until the full nonlinearity is taken 
into account and the final solution is obtained. The trace of 
the maximum flux density in the intermediate solutions is 
indicated with a dashed line in Fig.2. 

The coil current was fixed to 240 A in order to saturate the 

entire iron core. Table III shows the CPU time, the number of 
successive steps needed to obtain convergence and the 
maximum flux density in the model as a function of how many 
points of the original B(H) curve were used (relaxation 
factor = 0.1). The top three lines refer to the case without 
magnetostriction, while the bottom three lines refer to the case 
with a magnetostriction of λ(2T)=25 µm/m. Fig.2 indicates 
the evolution of the maximum flux density for the case 
without magnetostriction. Magnetostriction will keep the flux 
density at lower values during the process of relaxing the 
material nonlinearity. The number of successive steps and the 
CPU time show no specific tendency, and are not influenced 
by the presence of magnetostriction. This process of relaxing 
the material nonlinearity uses a relatively large amount of 
CPU time, but offers a robust way to convergence. 

VIII.  CONCLUSION 

A numerically strong coupling between the magnetic and the 
mechanical system has been established. The coupling terms 
are related to magnetic forces and magnetostriction. 
Magnetostriction forces are derived based on the analogy with 
thermal stresses. The magnetomechanical system is solved 
using a fixed point iteration. The relaxation factors and 
number of steps needed to obtain a solution strongly depend 
on the nonlinearities in the system: the saturation 
characteristic and the magnetostriction characteristic of the 
materials. A scaling factor for the displacement vector needs 
to be applied in order to balance the order of magnitude of the 
elements in the vector of unknowns. The process of relaxing 
the material nonlinearity is a slow but robust way to ensure 
convergence, even for highly saturated iron and for relatively 
high magnetostriction. 
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Fig.2 Relaxation of the magnetic material nonlinearity. 
Table III. Number of successive substitution steps, CPU time and maximum flux density in the model 
during the process of relaxing the magnetic material nonlinearity. 

ints used  5 6 7 8 9 10 11 12 13 14 
.subst. steps 56 62 37 31 37 43 54 49 49 29 
e (s) 44 47 29 24 28 32 40 36 36 21 
T) 

λ=0 

10.03 5.59 3.75 3.44 2.87 2.35 1.85 1.62 1.60 1.60 
.subst. steps λ=25µm/m 61 47 49 34 37 41 54 48 49 31 
e (s)  47 36 38 26 28 31 41 35 36 20 
T)  4.54 4.26 3.51 3.28 2.81 2.33 1.85 1.62 1.60 1.60 
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