
 

 

Résumé - Pour réaliser des simulations fiables des machines 
électriques, la modélisation précise des matériaux 
ferromagnétiques est nécessaire. Des techniques de 
modélisation de magnétostriction et d'hystérésis sont 
discutées. L'influence des harmoniques est prise en compte 
grâce à une approche multi-harmonique. 
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1. Introduction  

Magnetostriction of the stator iron yoke causes stator 
deformation leading to vibrations and noise. When the 
material behaviour λ(B) is known (magnetostrictive strain 
as a function of flux density), the strain distribution can be 
represented by an equivalent force distribution using the 
mechanical stiffness matrix of the stator. This way, 
magnetostriction, reluctance and other external forces can 
be summed to obtain the total stator deformation.  
Hysteresis models have been studied extensively over the 
past decades. They are however rarely used in commercial 
software. An implicit use of these models in the harmonic 
balanced finite element method  is discussed in the paper. 
A short overview of the main properties of these models is 
given. The saturation of the ferromagnetic core of an 
inductor model is simulated using the harmonic balanced 
finite element method. 

2. Magnetostriction 

The deformation caused by magnetostriction (MS) can 
contribute significantly to the vibrations and noise of 
electric machinery. Once the λ(B) characteristics of the 
materials used are known, i.e. magnetostrictive strain λ as 
a function of magnetic flux density B, the MS behaviour 
of the material can be incorporated in the coupled 
magnetomechanical finite element (FE) analysis. Here, it 
is illustrated how to take the magnetostrictive strain into 
account using the thermal stress analogy. 

3. Coupled magnetomechanical analysis 

Because the stator deformation occurring is very small, 
the coupling between the magnetic FE model and the 
mechanical FE model is usually effected using a weak 
coupling (cascade approach). First, the magnetic problem 
is solved and the reluctance forces and magnetostrictive 
strain acting on the stator are found by post-processing the 
magnetic solution. By magnetostriction forces we indicate 
the set of forces that induces the same strain in the 
material as the magnetostriction effect does. This 
approach is similar to the use of thermal stresses [1–3]. 
When all relevant forces have been determined, the 
mechanical problem is solved, giving the static stator 
deformations. 

4. Magnetostriction forces 

The finite element method is used to solve for the 
magnetic field inside a synchronous machine (figure 1), 
giving the flux density vector B

r
 for every element. Then, 

element by element, the following steps are taken to 
obtain MS forces: 
1. The strain λe in the element is determined using the flux 
density B in the element. Figure 2 shows a typical 
magnetostrictive strain versus flux density material 
characteristic λ(B) for isotropic and anisotropic yoke 
material. 

 
 

Figure 1:  One pole of six-pole synchronous machine: 
magnetic flux pattern for a particular rotor 
position. 
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Figure 2:  Magnetostrictive material characteristics of 
non-oriented 3% SiFe (solid lines, as a 
function of tensile stress) and M330-50A 
(dashed lines, for rolling and transverse 
direction). 

 
2. The strains λe and λe

t are converted into nodal 
displacements while considering the element's midpoint 
(centre of gravity) as fixed. 
3. For static problems, the mechanical element stiffness 
matrix Ke is constructed and multiplied with the MS 
displacement ae

ms , yielding the magnetostriction forces 
Fe

ms = Ke ae
ms on the three nodes of the triangular finite 

element. 
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Figure 3 shows the Fms distribution in the yoke of the 
synchronous machine stator, for the magnetic field shown 
in figure 1. The MS strain wants to increase the stator 
circumference. The MS forces can now be added to any 
external or reluctance forces to give the total force 
distribution acting on the stator, which can be readily used 
for deformation or vibration calculation. 

a) b)  

Figure 3:  Magnetostriction forces on the stator for  
a) isotropic non-oriented 3% SiFe, 
b) anisotropic M330-50A. 

5. Non-linear modelling  

In modern applications, ferromagnetic materials are 
operated at substantial levels of saturation and often 
exhibit significant hysteresis. This results in an increase of 
the harmonic distortion of all currents and voltages, 
compared to the harmonic distortion that is already 
introduced by the power electronic supply and by the 
motion in the non-homogeneuos field of the airgap in the 
device. FE techniques which allow for static or time-
harmonic simulation are widely spread and have proven to 
be useful in many applications. If e.g. losses have to be 
predicted, these techniques fail and other approaches have 
to be considered. An advanced numerical simulation of 
the machine behaviour requires a comprehensive 
approach, also taking into account the power supply. 
Obviously, this seriously increases the complexity of the 
problem. The incorporation of non-linear and hysteretic 
material models within finite element simulation is one of 
the challenging topics in quasistatic electromagnetic 
simulation. They introduce a sometimes insurmountable 
burden into the FE software, even if only steady-state 
operation is considered.  

6. Multi-harmonic approach 

Generally spoken, problems may be studied in time or in 
frequency domain. In time domain, accurate simulations 
of the machine, including the power supply, non-linear 
and hysteretic material characteristics, can be performed 
by a transient FE analysis. The power supply can be 
modelled by a function based approach [4]. For hysteresis, 
numerous techniques have been developed [5,6], among 
which the models of Preisach, Jiles-Atherton and Stoner-
Wolfarth are the most widespread. However, when taking 

all these phenomena into account, transient simulations 
may cause excessive simulation times, especially for 
models with large meshes or many significant harmonics, 
to which small time steps have to be applied.  
In frequency domain, the time-harmonic approach is 
commonly applied. However, this technique only allows 
for the use of one frequency, which limits its applicability. 
Simultaneous simulation considering more than one 
frequency, has first been proposed in [8] and is called 
harmonic balanced FE method (HBFEM). This multi-
harmonic approach is not a very common practice, mainly 
because of the huge computational requirements, both 
memory and processor time, required to solve the coupled 
system of equations for all harmonic components in a 
single step. An iterative solver designed for these 
particular systems, decreases the simulation times 
considerably and, hence, enables the application of the 
multi-harmonic FE method to models of technical devices 
with complicated geometries and excitations [9].  
The HBFEM is especially suited for the simulation of the 
steady-state operation, as opposite to the transient method 
which also copes with transient phenomena. However, a 
fast and accurate simulation of the stationary behaviour is 
indispensible to detect local hot spots due to additional 
losses, and the ageing of insulation material due to voltage 
spikes, during the design process.  
The HBFEM can easily be obtained by transforming the 
governing equation into the frequency domain. Ampère's 
law in terms of the magnetic vector potential A

r
 reads as 

 ( ) V
t
AA ∇σ−=

∂
∂σ+×∇ν×∇
r

r
   , (1) 

where V is the applied voltage over the conducting regions 
with conductivity σ and  ν is the reluctivity. After 
transformation in the frequency domain, this equation 
becomes 

 ( ) ( ) VAA ∇∗σ−=Τ∗σ+×∇∗ν×∇
rr

   , (2) 

where the magnetic vector potential, the applied voltage, 
the conductivity and the reluctivity are transformed into 
discrete spectra. The single bar under the variable 
represents a spectrum of odd harmonics, while the double 
bar represents a spectrum of even harmonics. The symbol 
* denotes a convolution and Τ is the Fourier equivalent 
operator of the time derivative. In 2D, after discretising 
the domain in fn  triangles and writing the solution as a 
sum of linear FE's for all harmonics 

 ( )∑
=

=
fn

j
jjzz yxNAA

1
,     , (3) 

with ( )yxN j ,  the shape functions, the following system 
of equations is obtained: 

 ( ) fxLK =Τ∗+∗     , (4) 

in which 
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Often, the conductivity can be considered to be constant, 
which yields a scalar expression for ijL . Due to the 

symmetry of the system, a Krylov Subspace is efficiently 
constructed by the Lanczos procedure. Hence, solvers as 
Conjugate Gradients or Symmetric Quasi-Minimal 
Residual are applicable [9,10].  

7. Saturation  

Saturation is taken into account by a non-linear iteration. 
In each iteration step, the reluctivity spectrum ν(ω), where 
ω represents the pulsation, has to be determined for every 
finite element, according to magnetic field spectrum B(ω) 
derived in the previous step. The derivation of these 
spectra can principally be performed by the following 
procedure, which is schematically demonstrated in figure 
4 (T is the period of the fundamental component): 
 
  1. Calculate B(ω) out of Az(ω) 
  2. Transform B(ω) into B(t) 
  3. Calculate ν(t) from BH-curve 
  4. Transform ν(t) into ν(ω)  
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Figure 4: Derivation of the reluctivity spectrum. 

 
This operation is rather time-consuming, as it involves a 
forward and inverse Fourier transformation. Significant 
improvements can be achieved by replacing this 
procedure by a multivariate mapping using standard 
neural network learning techniques [7]. This mapping can 
further be optimized by adapting the accuracy to the 
prescribed accuracy in the non-linear loop.  

8. Example: inductor with ferromagnetic core 

The HBFEM is demonstrated for the simulation of an 
inductor with a ferromagnetic core (figure 5). The 
magnetic material only exhibits saturation. A sinusoidal 
current is applied to the stranded coils and four harmonic 
components have been considered: the fundamental 
component, the 3rd, the 5th and the 7th harmonic. Figure 6 
shows the field lines for the individual harmonic 
components.  
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Figure 5: Inductor model with ferromagnetic core. 
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Figure 6:  (a-d) Magnetic flux lines of the 1st, 3rd, 5th 
and 7th harmonic component. 

 
The higher harmonic solutions in figure 6 are non physical 
solutions. There exist closed field lines in regions where 
no current is present. These plots may not be considered 
apart from each other. The correct solution is a 
superposition of the four harmonic components. They 
however clearly indicate the incidence and importance of 
saturation. 

9. Hysteresis  

Compared to saturation, hysteresis also introduces a phase 
difference between the flux density B

r
and the magnetic 

field strength H
r

. The following constitutive relation 
holds for hysteretic materials: 

 ( ) ( ) ( ) ( )tHtBttH c
rrr

+ν=    , (6) 

where Hc  represents the coercitivity. Here, the reluctivity 
is assumed to be a scalar. Hence, vectorial equation 6 



 

 

simplifies to a scalar equation. An extra degree of 
freedom is introduced, as both the reluctivity ν and the 
coercitive field Hc  are a function of the flux density B, 
while Hc may also be positive or negative depending on 
the time derivative of the field. The determination of ν 
and Hc depends on the problem to be solved. One 
proposal is to define the reluctivity by demanding | Hc(B) | 
to be equal, independent of the time derivative of the 
field. 
Ampère's law in terms of the magnetic vector potential is 
slightly altered in time and frequency domain:  

 ( ) cHV
t
AA

r
r

r
×∇−∇σ−=

∂
∂σ+×∇ν×∇     , (7) 

 ( ) ( ) cHVAA
rrr

×∇−∇∗σ−=Τ∗σ+×∇∗ν×∇     . (8) 

The spectra of the reluctivity and the coercitivity are 
computed by the same procedure as described for 
saturation effects, with the help of the hysteresis models, 
briefly commented below. 

10. Hysteresis models 

The existing hysteresis models can be roughly divided in 
two different classes: mathematical and physical models 
[5,6]. Physical models, such as the model of Jiles-
Atherton, consider the underlying physics of hysteresis to 
model the phenomenon. Mathematical models, such as the 
Preisach model, consider hysteresis as a superposition of 
elementary hysteresis loops. The Stoner-Wolfarth model 
is a kind of hybrid model. Recently, hysteresis models 
based on neural network techniques have been developed 
[11,12]. 
The Jiles-Atherton method derives a hysteresis loop out of 
the Weiss-theory for ferromagnetism. The model relies 
upon a set of differential equations, for which five 
parameters have to be determined by a measurement of 
the hysteresis loop. Despite its simplicity, it can yield a 
non-physical negative differential permeability and hence 
lead to numerical instabilities during simulation. 
Furthermore, higher order loops are not sufficiently well 
approximated, as opposed to the Preisach model. 
In the Preisach model, the hysteresis loop is considered as 
a superposition of an infinite number of elementary 
rectangular hysteresis loops, called the Preisach-dipoles. 
By measuring the Everett-function, a certain weight is 
assigned to every dipole. Sophisticated Preisach models 
also comprise dynamical effects and anisotropy. Highly 
accurate models, however, require the storage of a large 
amounts of weights. 
The Stoner-Wolfarth model also regards the hysteresis 
loop as a superposition of an infinite number of dipoles. 
Here, the dipoles themselves can have a non-rectangular 
hysteresis loops. This model has a lot of numerical 
disadvantages when compared to the Preisach model. 
However, it inherits anisotropy thanks to the arbitrarily 
shaped dipoles. 

11. Conclusions 

Various techniques to model the material behaviour 
numerically are discussed. The magnetostrictive strains 
are represented by a set of forces that induce mechanical 
strains and deformation of the same size as those caused 
by magnetostriction. Using the FE method, the 
magnetostriction forces are obtained as a nodal force 
distribution on the FE mesh. These forces can be used for 
further deformation or vibration analysis. 
A harmonic balanced finite element method is particularly 
attractive for simulating the steady-state operation of 
saturated electromagnetic devices, e.g. a ferromagnetic 
inductor. Hysteresis is incorporated in the approach 
relying upon well-established hysteresis models, such as 
the Preisach model, the model of Jiles-Atherton and the 
Stoner-Wolfarth model. 
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