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Abstract:  The use of coupled electromagnetic-thermal finite
element methods to estimate the thermal impact of power system
harmonics on transformers is illustrated.  At first, the magnetic
modelling of transformers is outlined with attention for the core,
windings and the external source or loads.  Particular attention is
paid to the foil windings.  The loss computation and the thermal
modelling is discussed.  The calculation of the global coupled
problem using a mixed frequency and time domain approach, for the
steady-state as well as for a long-term transient evolution, is treated.
These methods are applied to a 30 kVA distribution transformer.
The results are compared with measurements.  A derating procedure
based on the simulated hot spot temperature is presented.
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I. INTRODUCTION

Transformers carrying power system harmonics exhibit
additional load losses, yielding higher hot spot temperatures.
Reducing the maximum apparent power transferred by the
transformer, often called derating, is required when such
power quality related problems occur [1-5].  To estimate the
impact of a harmonic load already in the design stage, a finite
element method (FEM) field calculation can be employed.
The FEM models can be applied in a derating produre or to
estimate the time evolution of the thermal overload under
certain conditions.

The behaviour of an electromagnetic device, and in
particular a transformer, are best modelled using coupled
electromagnetic-thermal numerical field models.  On one
side, the electromagnetically based losses are the source
terms for the thermal problem.  On the other side, the specific
electromagnetic material parameters are temperature
dependent.  It can be noted that there are large differences in

time constants of the magnetic and thermal field.  This yields
a ‘stiff’ transient problem, requiring a special solution
approach.

II. MAGNETIC FIELD MODELLING

A. FEM frequency domain computation

1) Single frequency magnetic fields:  The magnetic fields
are simulated using the magnetic vector potential A [6]:
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After substituting (1) in the Maxwell equations, the following
equation for a 2D time dependent magnetic field is obtained:
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A the z-component of the vector potential
T temperature
X magnetic reluctivity (non-linear due to

ferromagnetic saturation)
V electrical conductivity (thermally dependent)
Js source current density

with

Vs source voltage

The temperature dependence of several parameters in the
magnetic field equation may cause significant changes in
their solution, for instance in the skin effects and loss
distributions.  Therefore, this equation is inherently coupled
to the thermal field distribution.

To compute quasi-periodic AC magnetic fields, it is
interesting to substitute the vector potential A in (2) by:
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Here, the magnetic vector potential is split into a time
dependent phasor and an oscillating harmonic function.  The
frequency of the oscillation f is the fundamental mains
frequency.  Then, the phasor describes the long-term
magnetic field evolution related to slow time constants, e.g.
due to thermally coupled effects.  A similar substitution is
obtained for the source quantities.  Eq. (2) becomes a
complex equation:
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The remaining dynamic phenomena in this equation take
place on the slow (thermal) time scale; the fast oscillations
have been eliminated.  The reason for this substitution is to
avoid numerical problems due to stiffness when the small
magnetic and large thermal time constants are to be combined
in a coupled simulation.  For the steady-state field, the time
derivative of the phasor is omitted.

2) Multi-harmonic magnetic fields:  When the currents
and/or voltages involved are not sinusoidal, but still quasi-
periodic, the magnetic field will contain harmonic
components as well.  In that case, it is better to substitute the
time-dependent magnetic vector potential by a sum of
harmonic components:
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Substituting (5) in (2) yields a set of equations of the form
(4), as the frequency components are orthogonal.  These
equations are then theoretically coupled through the
ferromagnetic non-linear reluctivity [7].

3) Magnetic saturation:  In real power systems, the internal
impedance of the supply system is low enough to keep the
voltage distortion relatively limited, even when high current
distortion is found.  Since the magnitude of the magnetic flux
is inversely proportional to the frequency, the fundamental
component dominates the transformer’s magnetic field
evolution.  As a consequence, it is reasonable to assume that
the saturation of the ferromagnetic core is determined by the
fundamental field component.  The set of equations obtained
by substituting (5) in (2) can then be split into [7]:
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with h>1

Eq. (6) is non-linear and has to be solved first to fix the
saturation level for the remaining linear equations (7), which
can be solved in parallel.

In the derivation of these frequency domain magnetic field
equations, it is assumed that the saturation level remains
constant, which is an approximation.  Alternatively, a far
more complicated harmonic balance algorithm can be used
[7].

The finite element discretisation methodology is applied on
the equations (4) and (6-7).  The time derivative is generally

approximated by a first order difference.  Eventually, the
algebraic system to be solved in every time step is obtained.

B. Transformer model

In general, the magnetic field model of the transformer can
be distinguished into three parts: the core, the windings and
the surrounding ‘air’.

1) Air:  In principle, the surrounding air is entirely to be
included in the model as it contains the leakage flux.  In
practice, a Kelvin transformation is applied to the domain at a
certain distance, yielding an ‘open boundary’ [8].

2) Core:  The ferromagnetic iron core can be modelled
using an anisotropic reluctivity.  It is possible to include the
effect of iron losses by using a complex reluctivity with a
phase angle due to the delay between the B and H vector [9].

3) Winding:  The representation of the winding is related
to the modelling of skin effect.  Therefore, a stranded
winding is represented using a uniform scaled current
density.  The induction term in the magnetic field equation,
representing the eddy currents, is neglected.  This
approximation is not correct for massive windings, such as
foils.  They exhibit eddy currents and a non-uniform current
density distribution even for the fundamental frequency.  The
skin effect imposes the necessity to mesh the foil winding
cross-sections individually using elements having a size
which is smaller than this skin depth.  Especially in the
models with higher current harmonics, this may yield large
finite element.

C. External circuit model

The current source densities at the right-hand side of the
magnetic field equations are associated to another set of
equations, the circuit equations [6].  For a transformer,
typically two parts have to be represented in this way: the
supply side and the load.  The supply is modelled by a
voltage source with the fundamental frequency and an
internal impedance.  At harmonic frequencies, the voltage
source is replaced by a short circuit (Fig. 1).  The load, e.g. a
bridge rectifier, is modelled by a set of current sources, one
for each harmonic frequency (Fig. 2).  The magnitude and the
phase of each current source are determined by the complex
spectrum of the load current.
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Fig. 1.  Circuit model for fundamental frequency
(the part in the frame is included in the FEM model).
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Fig. 2.  Circuit model for harmonic frequencies.



III. THERMAL FIELD MODELLING

A. Thermal field computation

The transient thermal field is calculated by means of a
Poisson-like differential equation:
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T temperature
O thermal conductivity
U mass density
c heat capacitance

with

q heat source density (often a non-linear and
coupled expression)

It is to be extended with mixed boundary conditions,
representing convective cooling:
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The determination of the heat transfer coefficients hc towards
the medium with temperature T

f
 can become troublesome as

it requires the knowledge of the cooling fluid flow regime.
Based on the estimation of this state, modelled by a Reynolds
number associated with the relevant geometrical
configuration, a Nusselt number is calculated, which is a
dimensionless heat transfer coefficient [10].  Thus, the air
must not be meshed in the thermal problem.

The equations (8) and (9) are discretised in space and time
by means of the FEM.

B. Transformer model

It depends on the cooling system, which construction parts
have to be considered in the thermal model.  For instance, for
air-cooled transformers, the core and the windings can be
treated almost separately.  The core can be represented as an
anisotropic solid part due to the laminations.

The windings, being a complicated composite of insulation
and conductors, are usually represented by means of
equivalent (anisotropic) conductive materials.  Several
options exist:
x Isotropic composite:  Some types of conductors, such as

dense stranded windings can be represented by a single
isotropic thermal conductivity, calculated using a weighted
average, based on volume fractions:
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Similar formulae are to be used for U and c.
x Anisotropic composite:  Other types of conductors, such as

dense foil windings are better represented by an

anisotropic thermal conductivity.  Two main directions are
distinguished for this type of coil, namely in the foil plane
(axial Oa/tangential Ot) and perpendicular to it (radial Or).
In the foil plane directions, the conductor and insulation
layers with thickness d are in parallel.  The conductor
value dominates:
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In the perpendicular direction, the conductor and insulation
layers with thickness d are in series.  The insulator value
dominates:
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x Alternatively, a special type of element relations can be
used, in which the thin insulation layers are modelled as a
thermal contact resistance layer [11].  This approach
increases the number of degrees of freedom.

IV. LOSS COMPUTATION

The transformer losses are distinguished into the no-load
losses and the load losses.  The no-load losses are almost
entirely core iron losses.  These are calculated by the FEM by
the summation of the uniform loss densities within the
elements.  The loss density distribution is obtained by
estimating the iron loss values as a function of the magnetic
flux density.

The load losses, which are mostly Joule losses, can be split
into three types [3]:
x DC losses
x Additional AC losses
x Additional stray losses (in structural parts)

Current harmonics cause an increase of the additional AC
losses and the stray losses.  For a stranded winding, with a
non-prominent skin effect, the additional AC losses rise
proportionally to the square of the harmonic order, which led
to the traditional definition of the K-factor [4].  The stray
losses are very much construction dependent.

The Joule losses in the windings are calculated by the
summation of the integrated loss densities in the different
finite elements in the windings.  However, a different
approach is chosen for the massive (foil) windings and
stranded windings.
x Foil windings:  Both source and eddy current densities are

present in the FEM magnetic field model.  The total Joule
loss is obtained by:
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x Stranded windings:  Since the eddy currents are neglected
in this type of winding, only the DC losses are modelled.
The contribution of the additional AC losses is to be
estimated separately.  This is accomplished by calculating
the losses in an individual strand, subject to a leakage flux,
modelled as a small massive conductor in additional FEM
calculations.  By varying the leakage flux strength, the
additional loss function fec can be estimated and added
[12].  This set of separate limited FEM calculations has to
be performed only once for a certain strand dimension.

� � � ��� :
¸
¸

¹

·

¨
¨

©

§
�   

e
eec

s

e
eACwire Bf

J
qIRP 2

2
2 .Z

V
Z (14)

V. COUPLED PROBLEM COMPUTATION

The most flexible way to solve the global coupled problem
consisting of the multiple magnetic field equations (6-7), the
loss calculation routines (13-14), the thermal field equation
(8) and the material characteristic corrections in every time
step by means of the FEM, is block iteration (Fig. 3).  This
means that the subproblems are solved independently using
specific efficient solvers with immediate re-use of the
obtained intermediate results, until convergence.  An
alternative would be the construction of a Jacobian matrix in
a Newton method.  This yields a large ill-conditioned system
to solve, in particular when several harmonics are involved.
It is not always possible to derive the required partial
derivatives.

Because of the diverse physical nature of the subproblems,
not all the subproblems are solved on the same mesh.  For
instance, in the magnetic fields, air is meshed, whereas in the
thermal field it is replaced by convective boundary
conditions.  To transfer the results from one mesh to another,
projection or interpolation routines are used.

For steady-state problems, only the inner loop of the flow
chart in Fig. 3  has to be solved.  Transient problems require
both loops.  To overcome stiffness problems due to the
difference in typical time constants of the magnetic and
thermal problem, the ‘transient frequency domain approach’,
as outlined above, has be used.  As an approximation, the
time derivative term could be skipped and a sort of quasi-
steady-state problem is solved in every time step.  However,
this may lead to an unstable algorithm for large time steps as
this implements a local extrapolation to a steady state, with
the danger of overestimating loss values.

Solve magnetic
field problem(s)

Calculate
losses

Solve thermal
problem

Update material
properties

conver-
gence?

Adapt time step

Steady
state ?

n

y

start

stop

n

y

Fig. 3.  Coupled problem computation flow chart.

VI. APPLICATION

A. Transient heating simulation

A 30 kVA transformer with 50 foil conductors as its
secondary winding (closest to the core) is modelled in the
described way.  The primary winding is constructed of
strands.  The first order magnetic FEM model (Fig. 4) is
constructed using adaptive refinement after domain based
error estimation [13].  The real component of the magnetic
field solution of the simulated short-circuit test is shown in
Fig. 5.  Fig. 6 shows a detail of the leakage field.

Fig. 4.  FEM mesh and detail showing the fully meshed foil conductors.

Fig. 5.  Real part of the final magnetic field solution
of a simulated short circuit test.



Fig. 6.  Detail of the leakage flux; the field lines passing through the foil
conductors in the top the coil are associated with additional eddy currents

and losses at that location.

A short-circuit test simulation of the transformer operated
by a sinusoidal voltage at 50 Hz is used to verify the
approach.  Due to the low core flux, saturation effects are
negligible.  inside the foils closest to the core high eddy
currents are generated, shielding the outer foils.  The
surrounding air and the air between the windings is replaced
by appropriate convection boundary conditions in the thermal
model.  Anisotropic materials are used for the foils.  A detail
of the solution is shown in Fig. 7, clearly indicating the
location of the hot spot in the top of the foil winding coil.

Fig. 7.  Isothermal lines of the upper part of a coil set;
on the left the foil conductor; on the right the wire coil.

To validate the transient simulations, measurements were
performed and compared.  Fig. 8 shows a good agreement.
The difference between the steady-state temperature and the
heating rate in the measurements and the simulation is
explained by the difficult modelling of the natural convection
cooling, especially for the coil parts within the yoke.
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Fig. 8.  Comparison of measured and calculated heating of the transformer
 in a short-circuit situation.

B. Thermal derating calculation

Simulations for different harmonic frequencies allow the
determination of the additional losses due to power system
harmonics.  With this information, the increase of the hot
spot temperature in the coils is simulated.  This is illustrated
by estimating the impact of a harmonic current spectrum
(Fig. 9) on the transformer.  The spectrum is obtained from
measurements on high power electrical drive systems.  It is
limited to the 19th harmonic.
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Fig. 9.  Magnitude spectrum of the current harmonics.

In this ‘hot spot derating test’, in fact an optimisation
problem, the steady-state temperature is calculated for several
harmonic current magnitudes.  The temperatures at the
known locations of the hot spots is retrieved and plotted in
Fig. 10 (the rightmost points indicate the non-derated current
heating; the hot spots have a more than doubled temperature).
The current magnitude for which the rated heating known
from simulations with sinusoidal currents is reached, is
interpolated. For load currents with the spectrum in Fig. 9,
this is about 3.0 A; a thermally defined derating of almost
50 % is applicable.

The transient coupled algorithm can be used to study the
heating effects under temporarily higher harmonics loads: in
this way probable damage due to overload can be predicted.
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VII. CONCLUSIONS

The coupled electromagnetic-thermal computation of
transformers subject to power system harmonics is outlined.
The calculation of the magnetic field in a mixed frequency
and time domain approach is discussed, along with the
thermal modelling and loss computation procedures.  The
solution of the constructed coupled problem is treated.

The methods are applied to a 30 kVA three-phase
distribution transformer with a mixed stranded/foil winding.
The transient heating up is compared with measurements.  A
thermal derating procedure, applicable in the design stage,
using the computation model, is presented.

IX. REFERENCES

[1] I.Kerszenbaum, A.Mazur, M.Mistry and J.Frank, “Specifying dry-type
distribution transformers for solid-state applications,” IEEE Trans. Ind.
Applicat., vol. 27, no.1, pp. 173-178, Jan./Feb. 1991.

[2] G.M.Massey, “Estimation Methods for power system harmonic effects
on power distribution transformers,” IEEE Trans. on Industry
Applications, vol.30, no. 2, Mar./Apr. 1994, pp. 485-489.

[3] L.W.Pierce, “Transformer Design and Application Considerations for
Nonsinusoidal Load Currents,” IEEE Trans. on Ind. Appl., vol. 32, no.
3, May/June 1996, pp. 633-645.

[4] M.Bishop, J.Baranowki, D.Heath, S.Benna, “Evaluating harmonic-
induced transformer heating,” IEEE Trans. on Power Delivery, Jan.
1996, vol. 11, no.1, pp. 305-311.

[5] M.D.Hwang, W.M.Grady, H.W. Sanders Jr., “Calculation of Winding
Temperatures in Distribution Transformers Subjected to Harmonic
Currents,” IEEE Trans. on Power Delivery, vol. 3, no. 3, July 1988.

[6] K. Hameyer, R. Belmans, Numerical Modelling an Design of Electric
Machines and Devices, WIT-Press, 1999.

[7] J. Driesen, K. Hameyer, “Frequency Domain Finite Element
Approximations for Saturable Electrical Machines under Harmonic
Driving Conditions,” to be published in COMPEL Journal, April 2000,
4p.

[8] E.M. Freeman, D.A. Lowther, “A Novel Mapping Technique for Open
Boundary Finite Element Solutions to Poisson Equation,” IEEE Trans.
on Magnetics, vol. 24, no. 6, 1988, pp. 2934-2936.

[9] D. Lederer, A. Kost, “Modelling of Nonlinear Magnetic Material using
a Complex Effective Refluctivity,” IEEE Trans. on Magnetics , vol. 34,
no. 5, 1998, pp. 3060-3063.

[10] J.H. Lienhard, A Heat Transfer Textbook, Prentice-Hall, Engelwood
Cliffs, N.J., 1981.

[11] J.Driesen, R.Belmans, K.Hameyer, “Finite element modelling of
thermal contact resistances and insulation layers in electrical
machines,” Proc. IEEE International Electric Machines and Drives
Conference (IEMDC’99), Seattle, Washington, USA, 9-12.05.99, pp.
222-224.

[12] J. Driesen, K. Hameyer, “Practical Method to Determine Additional
Load Losses due to Harmonic Currents in Transformers with Wire and
Foil Windings,” IEEE Power Engineering Society Winter Meeting, 23-
27 January 2000, Singapore, 6 p.

[13] J. Driesen, G. Deliège, K. Hameyer, “Coupled thermo-magnetic
simulation of a foil-winding transformer connected to a non-linear
load,” to be published in IEEE Trans. on Magnetics, September 2000, 4
pages.

VIII. BIOGRAPHIES

Johan Driesen (M’97) graduated in 1996 as
Electrotechnical Engineer from the
Katholieke Universiteit Leuven (KULeuven).
Since 1996 he is a research assistant of the
Fund for Scientific Research of Flanders
(F.W.O.-Vl.). He received the 1996 R&D-
award of the Belgian Royal Society of
Electrotechnical Engineers (KBVE) for his
Master Thesis on power quality problems. He
is currently working towards the Ph.D. degree
in Electrical Engineering at KULeuven. His
research topics are the finite element solution
of coupled thermal-electromagnetic problems

and related applications in electrical machines and drives, microsystems and
power quality issues.
J. Driesen is member of the Koninklijke Vlaamse Ingenieursvereniging
(KVIV) and the IEEE.

Kay Hameyer (SM’ 1995) received the M.S.
degree in electrical engineering in 1986 from
University of Hannover, Germany. He received
the Ph.D. degree from University of Technology
Berlin, Germany, 1992.
From 1986 to 1988 he worked with the Robert
Bosch GmbH in Stuttgart, Germany, as a design
engineer for permanent magnet servo motors. In
1988 he became a member of the staff at the
University of Technology Berlin, Germany.
From November to December 1992 he was a
visiting professor at the COPPE Universidade
Fderal do Rio de Janeiro, Brazil, teaching
electrical machine design. In the frame of a

collaboration with the TU Berlin, he was in June 1993 a visiting professor at
the Université de Batna, Algeria. Beginning in 1993 he was a scientific
consultant working on several industrial projects. From 1993 to March 1994,
he held a HCM-CEAM fellowship financed by the European Community at
the Katholieke Universiteit Leuven, Belgium. Currently he is professor for
numerical field computations and electrical machines with the K.U.Leuven
and a senior researcher with the F.W.O.-V. in Belgium, teaching CAE in
electrical engineering and electrical machines. His research interests are
numerical field computation, the design of electrical machines, in particular
permanent magnet excited machines, induction machines and numerical
optimization strategies.
Dr. Hameyer is member of the Koninklijke Vlaamse Ingenieursvereniging
(KVIV), the International Compumag Society and the IEEE.

Ronnie J.M.Belmans (S’77-M’84-SM’89)
received the M.S. degree in electrical
engineering in 1979 and the Ph.D. in 1984, both
from the Katholieke Universiteit Leuven,
Belgium, the special Doctorate in 1989 and the
Habilitierung in 1993, both from the RWTH
Aachen, Germany.

Currently, he is a full professor with the K.U.
Leuven, teaching electrical machines and CAD
in magnetics. His research interests include
electrical machine design (permanent magnet
and induction machines), computer aided
engineering and vibrations and audible noises in
electrical machines. He was the director of the

NATO Advanced Research Workshop on Vibrations and Audible Noise in
Alternating Current Machines (August 1986). He was with the Laboratory
for Electrical Machines of the RWTH Aachen, Germany, as a Von Humboldt
Fellow (October 1988-September 1989). From October 1989 to September
1990, he was visiting professor at the McMaster University, Hamilton, ON.,
Canada. He obtained the chair of the Anglo-Belgian Society at the London
University for the year 1995-1996.

Dr. Belmans is a member of the IEE (U.K.), the International Compumag
Society and the Koninklijke Vlaamse Ingenieursvereniging (KVIV).


