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ABSTRACT 

 
A rotational magnetic brake with a solid iron rotor is 

excited by a DC current (Fig. 1). The magnetic properties of 
the rotor are highly nonlinear. Currents are induced in the 
moving conductive rotor. The magnetic flux is swept along in 
the direction of the rotation (Fig. 2). 

The oscillations appearing in the finite element solutions at 
high speeds (Fig. 3), have a non-physical nature and are 
related to the discretisation technique [1]. It is crucial to 
detect these numerical oscillations and to cope with them. A 
severe mesh refinement yielding stable results would involve 
too large meshes. If adaptive mesh refinement is applied, 
reliable intermediate solutions, even on rough meshes, are 
required [2]. These are ensured by applying upwinding to the 
differential problem. The adaptive refinement strategy marks 
the elements experiencing high velocities or high magnetic 
energies and cuts them. The combined approach favours 
transition zones in the moving regions (Fig. 4). 

In Fig. 2, the nonlinear model is compared to an equivalent 
linear one. The dependences of the torque upon the excitation 
current and the velocity are shown in Fig. 5 and Fig. 6 
respectively. As the speed increases (from left to right in 
Fig. 2), the magnetic flux lines are pushed towards the 
surface of the solid iron rotor. In the nonlinear model (under 
in Fig. 2), the flux is redistributed towards the inside of the 
rotor (Fig. 2e) or at large velocities towards the air gap of the 
device (Fig. 2f). 
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Fig. 1: Rotational magnetic brake. 
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Fig. 2: Magnetic flux lines plots of the linear (a,b,c) and nonlinear (d,e,f)
simulations of the magnetic brake with the stator excited by 15 A and the
rotor rotating at 1 rad/s (a,d), 10 rad/s (b,e) and 100 rad/s (c,f). 
 

            
 
Fig. 3: Finite element solution suffering from numerical oscillations (linear
material, angular velocity -100 rad/s). 
 

a)      b)  
Fig. 4: Detail of a magnetic flux line plot (a) corresponding to a refined mesh
(b). 
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Fig. 5: Current-torque characteristics of the magnetic brake rotating at -
50 rad/s in the case of linear rotor iron and in the case of nonlinear rotor iron. 
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Fig. 6: Speed-torque characteristics of the magnetic brake excited by 15 A in 
the case of linear rotor iron and in the case of nonlinear rotor iron. 
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