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 Abstract — A general framework for the appli cation of the 
Newton methods in non-linear coupled electromagnetic-thermal 
problems solved with the FEM on independent subproblem 
meshes is presented.  The expli cit derivation of the Jacobian 
matr ix is outli ned and discussed.  A matr ix-free quasi-Newton 
method, to be used along with li near system solvers buil t 
around Jacobian-vector products is presented.  This method 
does not require expli cit derivatives and can be paralleli sed.  
The numerical aspects of these methods are discussed.  The 
different Newton methods are demonstrated using a steady-
state conductive heating example problem. 
 

I.INTRODUCTION 
 

 Non-linear coupled field problems, more in particular 
thermal-magnetic fields are usually solved by means of the 
finite element method using Picard algorithms (successive 
substitution) [1].  This calculation methodology consists of 
iterating over a sequence of more or less standard 
subproblem solutions.  The intermediate operations contain 
loss calculation algorithms and the calculation of the thermal 
influence upon the local material characteristic, occurring as 
a dependent coeff icient.  Different subproblem meshes can be 
combined using projections in between the calculations. 
 This paper tries to give a general framework to compose 
the Jacobian required for the non-linear Newton iterations 
for a combined frequency domain magnetic-thermal problem 
on independent subproblem meshes.  A quasi-Newton 
approach will be presented. 
 In the derivation, the coupled thermal-magnetic problem 
will be represented as in (1). 
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GA denotes the magnetic field residual, written in terms of 
the magnetic vector potential and GT the thermal field 
equation residual.  In case of a magnetic frequency domain 
method, A is a complex quantity.  The coupling functions, 
the dependent material characteristics and loss functions are 
implicitl y included in (1).  Here the thermal dependent 
electrical conductivity and joule losses are considered.  The 
variables A' and T' stand for the partial solution (implicitl y) 
projected on the mesh of the corresponding sub-problem. 
 

II .FULL NEWTON APPROACH 
 

A. Derivation 
 
 In the Newton-Raphson method, a set of corrections δA 
and δT to be added to an estimate of the non-linear solution is 
calculated [2] [3].  The system to be solved contains the 
Jacobian matrix and the residuals evaluated in the estimated 
solution. 
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However, when a frequency domain method is used, GA is 
complex and not analytic [4]: 
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As a consequence, the derivatives cannot be determined 
directly.  A solution to this is to split up the residual and treat 
the real and imaginary components independently: 
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  (5) 
with the same projection derivatives (geometrical functions): 
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These derivatives may introduce many entries in the Jacobian 
as the projection operation relates to many degrees of 
freedom on the different meshes.  For instance, the degree of 



freedom associated to the node x0 in Fig. 1, will i n general 
depend on nodes x1', x0' and x5'.  This results in a higher off-
diagonal fill -in. 

x0 x1

x2

x’1

x’2

x’3
x’4

x’5 x’0

 
Fig.1.  Mesh nodes coupled by projection, occurring on the different subproblem 
meshes. 

 
 In many cases, the explicit determination of the partial 
derivatives is a major problem as often the losses are 
computed through a complicated procedure and the material 
data are represented by tables. 
The block-structured Jacobians in (3) and (5) are 
asymmetrical.  Realistic problems are often ill -conditioned.  
This can be identified by the high condition number.  
Therefore, advanced iterative linear system solvers, such as 
GMRES [5] are required. 
 

II .QUASI-NEWTON APPROACHES 
 

A. Approximation methods 
 
The computational cost of a Newton method is determined by 
the effort required for the construction of the Jacobian and 
the solution of the correction equation system.  As the full 
Newton method can become a very expensive method, many 
approximations or quasi-Newton methods have been 
proposed [3][6], for instance the approximation of the 
Jacobian matrix. 
An interesting approach is to approximate the product of the 
Jacobian and a (small ) vector.  This type of matrix-vector 
product occurs in iterative linear system solvers such as 
GMRES or TFQMR [5].  A way to accomplish this is to use 
the difference of the operating point (partial) residual and a 
perturbed (partial) residual: 
 

 ( ) ( ) ( )
κ
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In practice, only the perturbed residual is to be calculated, 
which requires the solution of the considered problem, since 
the operating point residual is initiall y computed for the 
right-hand side of the correction equation system.  Hence, a 
Jacobian matrix-free algorithm or implicit Jacobian method 
arise.  This approach was initiall y suggested for fluid 
dynamics calculations [7], but is suggested in other scientific 
domains as well . 
Obviously, the accuracy of the approximation depends on the 
choice of κ.  It influences the approximation as well as the 
round-off errors.  A good choice is [6] [7]: 
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B. Implementation of Jacobian matrix-free algorithm 
 
However, to use the difference approximation of (7) along 
with the Jacobian in (5), several evaluations of a partial 
residual, at least one for every subproblem block, are 
required.  Moreover, the use of the GMRES algorithm will 
lead to a large memory consumption. 
Therefore, it is often more interesting to rewrite the 
equations explicitl y in terms of a smaller set of variables, the 
‘coupling variables’ .  Here, the set of electrical conductivities 
and loss quantities connected to the finite element mesh is 
appropriate: 
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Then, the correction equation becomes: 
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Using the difference approximation (7), the matrix-vector 
product in GMRES reduces to: 
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The calculation of the perturbed partial residuals can be 
performed in parallel, yielding an acceleration of about 
40 %.  The operation point solution can be used as a starting 
solution for this calculation. 
 

II .APPLICATION: CONDUCTIVE HEATING 
 

A. Problem description 
 
 As an application, a free, long, massive busbar with an 
applied voltage is calculated.  The electrical conductivity is 
temperature dependent.  The only losses in the model are 
caused by the source and eddy currents in the conductor.  It 
is cooled by convection at all faces.  One edge is assumed to 
be cooled with a lower convection coefficient, introducing a 
moderately asymmetrical cooling.  The problem equations 
are: 
 
 ( ) ( ) ( ) sr VTATjA ′−=′−∇⋅∇ σµωσµυ 00  (12) 

 ( ) ( )ATqT J ′−=∇⋅∇ ,λ  (13) 

 
The non-linear coupled problem has (at least) two solutions.  
The first, physical, solution (Fig. 2) results in a moderate 
increase of the bar temperature to a hot spot temperature of 
about 55 °C at the bottom where the highest current density 

is located.  The other solution is impossible in the physical 
realit y, as it is a result of the unconstrained extrapolation of 
the material characteristics involved in the coupling.  
Although this solution is not physicall y viable with this type 
of material and cooling conditions, it is not to be excluded 
that for other materials, configurations and conditions, 
multiple stable states may exist in the physical realit y.  In 
that case, the object’s history will determine which state 
eventually is reached. 
 

  
magnetic field  
around the bar 

thermal field 
inside the bar 

Fig.2.  Magnetic and thermal field solution of the coupled test problem. 

 
Two independent FEM models with first order triangular 
discretisations are used.  Whether the solution converges to 
the physical or non-physical field, depends on the algorithm, 
its associated parameters and the starting solution.  Fig. 3 
ill ustrates the convergence history of various Picard 
algorithms [8] with relaxation and a Newton algorithm.  The 
plotted parameter is the relative L∞-norm of the difference 
between consecutive solutions.  The Newton algorithm 
converges faster in the vicinity of the exact solution, but is 
more expensive.  The total computation time depends on the 
software implementation of the different underlying 
algorithms. 
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Fig.3.  Convergence history of different coupled problem solution algorithms.  

 
B. Jacobian derivation 
 
 The magnetic field equation yields a complex FEM 
matrix system: 
 
 ( )[ ] ( ) 0=′−′+ TFATjHK AAA  (14) 

 
with KA and HA the matrices due to the diffusion and eddy 
current term in (12).  FA contains the voltage driven source.  



This equation has to be split i n the real and imaginary 
component: 
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Likewise, the thermal equation yields: 
 
 ( ) 0,, =′′− TAAFTK irTT  (16) 

 
with KT the FEM matrix and FT the joule loss term. 
The Jacobian for the non-linear system consisting of (15) and 
(16) becomes: 
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The blocks associated with the eddy current term 
contain the temperature dependent electrical conductivity.  
As this temperature is obtained on the thermal mesh, 
projection is required.  These same derivatives show up in 
the different source terms as well:  
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The heat density term also depends on the magnetic field, 
due to the eddy current loss contribution. 
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 It is assumed that the element’s material parameters are 
modelled by constants within the first order element’s range.  
To correct the quantity, the average temperature is used, 
yielding the following expression for the derivative 
associated to a certain node: 
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 The joule loss expression is: 
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yielding the derivatives: 
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 The Jacobian matrix constructed in this way, has the 
structure of Fig. 4, in which the different blocks can be 
identified. 

 
Fig.4.  Fill -in pattern of the Jacobian matrix of the benchmark problem. 

 
 The condition numbers in this example problem range 
from 108 to 1010, being rather high.  The eigenvalue 
distribution (Fig. 5) is complicated, yielding a slow 
convergence.  The diagonal magnetic and thermal subblocks 
have condition numbers of about 103-104. 

 
Fig.5.  Eigenvalue distribution of the Jacobian matrix in the phase plane. 

 
C. Discussion 
 
 The Jacobian-free quasi-Newton implementation, written 
in terms of the electrical conductivites and loss densities of 
the elements has a comparable convergence behaviour.  In its 



implementation, it is not required to split the time-harmonic 
problem into a real and imaginary component as required for 
the Jacobian.  It is also possible to use more complicated 
material models and loss calculation algorithms in (22) and 
(24).  The problem of the ill -conditioned Jacobian is avoided 
due to the block arrangement.  The acceleration of the 
algorithm due to the paralleli sation seems to compensate for 
the Jacobian approximation error. 
 

V.CONCLUSION 
 

 Full Newton algorithms require the composition of a 
Jacobian matrix, for which a general methodology is outli ned 
here.  This involves the inclusion of field quantities 
projection equations, joule and eddy-current loss calculation 
expressions and non-linear thermal dependencies of material 
characteristics, such as the electrical conductivities.  The 
numerical properties, with respect to the iterative linearised 
system solution of the resulting correction equation are 
discussed. 
 An approximate (quasi-)Newton method, having the 
advantage that the Jacobian matrix has not to be computed 
explicitl y, is presented.  This approach uses a difference 
approximation for Jacobian-vector products, as occurring in 
iterative solvers algorithms such as GMRES.  A block 
ordering of the coupled problem equations enables a fast 
parallel implementation of this approach.  An alternative 
formulation of the coupled problem in terms of element 
material quantities and loss vectors, yielding a minimal 

number of non-linear solution variables, is used to limit the 
memory requirements of this algorithm. 
 The advantages and drawbacks of these methods are 
discussed and ill ustrated using a conductive heating problem.  
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