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Abstract — A general framework for the application of the
Newton methods in non-linear coupled electromagnetic-thermal
problems lved with the FEM on independent subproblem
meshes is presented. The eplicit derivation of the Jacobian
matrix is outlined and discusseed. A matrix-free quasi-Newton
method, to be used along with linear system solvers built
around Jacobian-vedor products is presented. This method
does not require explicit derivatives and can be parall€elised.
The numerical aspeds of these methods are discussed. The
different Newton methods are demonstrated using a steady-
state conductive heating example problem.

|.INTRODUCTION

Non-linear coupled field problems, more in particular
thermal-magnetic fields are usually solved by means of the
finite dement method wsing Picard algorithms (successve
substitution) [1]. This calculation methodology consists of
iterating over a sequence of more or less $andard
subproblem solutions.  The intermediate operations contain
losscalculation algorithms and the @lculation of the thermal
influence upon the local material characteristic, occurring as
a dependent coefficient. Different subproblem meshescan be
combined using projedionsin between the @lculations.

This paper tries to give a general framework to compose
the Jacobian required for the non-linear Newton iterations
for a combined frequency domain magnetic-thermal problem
on independent subproblem meshes. A quasi-Newton
approach will be presented.

In the derivation, the cupled thermal-magnetic probem
will berepresented asin (1).

G, (AT')
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Ga denotes the magnetic field residual, written in terms of
the magnetic vedor potential and Gr the thermal field
equation residual. In case of a magnetic frequency domain
method, A is a complex quantity. The cupling functions,
the dependent material characteristics and lossfunctions are
implicitly included in (1). Here the therma dependent
eledrical conductivity and joule losses are mnsidered. The
variables A' and T' stand for the partial solution (implicitly)
projeced on the mesh of the crresponding sub-problem.
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I1.FuLL NEWTON APFROACH
A. Derivation

In the Newton-Raphson method, a set of corredions da
and &; to be added to an estimate of the non-linear solution is
calculated [2] [3]. The system to be solved contains the
Jacobian matrix and the residuals evaluated in the etimated

solution.
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TD

However, when a frequency domain method is used, G, is
complex and not analytic [4]:
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As a consequence the derivatives cannot be determined
diredly. A solution tothisisto split uptheresidual and treat
the real and imaginary components independently:
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with the same projedion derivatives (geometrical functions):
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These derivatives may introduce many entriesin the Jacobian
as the projedion operation relates to many degrees of
freedom on the different meshes. For instance the degreeof



freedom assciated to the node X, in Fig. 1, will in general
depend on nodes X;', X' and xs'. This results in ahigher off-
diagond fill -in.

Fig.1. Mesh nodes coupled by projection, occurring onthe diff erent subproblem
meshes.

In many cases, the eplicit determination of the partial

derivatives is a major probem as often the loses are
computed through a complicated procedure and the material
data are represented by tables.
The block-structured Jacobians in (3) and (5) are
asymmetrical. Realistic probems are often ill -conditi oned.
This can be identified by the high condition number.
Therefore, advanced iterative linear system solvers, such as
GMRES[5] arerequired.

I1.QUASI-NEWTON APFROACHES
A. Approximation methods

The mmputational cost of a Newton method is determined by
the dfort required for the wnstruction of the Jacobian and
the solution of the @rredion equation system. As the full
Newton method can becmme a very expensive method, many
approximations or quasi-Newton methods have been
proposed [3][6], for instance the approximation of the
Jacobian matrix.

An interesting approach is to approximate the product of the
Jacobian and a (small) vedor. This type of matrix-vedor
product ocaurs in iterative linear system solvers such as
GMRES or TFQMR [5]. A way to accomplish thisisto use
the difference of the operating point (partial) residual and a
perturbed (partial) residual:

Ix, )= ' 7)

In practice only the perturbed residual is to be @lculated,
which requires the solution of the awnsidered problem, since
the operating point residual is initially computed for the
right-hand side of the crredion equation system. Hence a
Jacobian matrix-free algorithm or implicit Jacobian method
arise.  This approach was initialy suggested for fluid
dynamics calculations [ 7], but is suggested in other scientific
domainsaswell.

Obvioudly, the acauracy of the approximation depends on the
choice of k. It influences the approximation as well as the
round-off errors. A good choiceis|[6] [7]:

K =2¢72 ma><{Ixj|, magr(xj ))||\/||7y2 (8)



B. Implementation of Jacobian matrix-freealgorithm

However, to use the difference approximation of (7) along
with the Jacobian in (5), several evaluations of a partia
residual, at least one for every subproblem block, are
required. Moreover, the use of the GMRES algorithm will
lead to alarge memory consumption.

Therefore, it is often more interesting to rewrite the
equations explicitly in terms of a small er set of variables, the
‘coupling variables'. Here, the st of eledrical conductivities
and loss quantities conneded to the finite dement mesh is

appropriate:
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Then, the @rredion equation becomes:
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Using the difference approximation (7), the matrix-vedor
product in GMRES redwces to:
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The aculation of the perturbed partial residuals can be
performed in parale, yielding an accderation of about
40%. The operation point solution can be used as a starting
solution for this calculation.

I1. APARLICATION: CONDUCTIVE HEATING
A. Problem description

As an application, a freg long, massve busbar with an
applied voltage is calculated. The dedrical conductivity is
temperature dependent. The only losss in the model are
caused by the source and eddy currents in the onductor. [t
is coded by convedion at al faces. One elgeis assumed to
be cmded with a lower convedion coefficient, introducing a
moderately asymmetrical coding. The problem equations
are
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The non-linear coupled problem has (at least) two solutions.
The firgt, physical, solution (Fig. 2) results in a moderate
increase of the bar temperature to a hot spot temperature of
about 55 °C at the battom where the highest current density

is located. The other solution is impossble in the physical
reality, as it is aresult of the unconstrained extrapolation of
the material characteristics involved in the @upling.
Although this lution is not physicaly viable with this type
of material and coding conditions, it is not to be excluded
that for other materials, configurations and conditions,
multiple stable states may exist in the physical redlity. In
that case, the objed’s history will determine which state
eventually isreached.
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magnetic field
around the bar
Fig.2. Magnetic andthermal field solution of the coupledtest problem.

thermal field
inside the bar

Two independent FEM models with first order triangular
discretisations are used. Whether the solution converges to
the physical or non-physical field, depends on the algorithm,
its asociated parameters and the starting solution. Fig. 3
illustrates the @nvergence history of various Picard
algorithms [8] with relaxation and a Newton algorithm. The
plotted parameter is the relative L.-norm of the difference
between conseautive solutions. The Newton algorithm
converges faster in the vicinity of the exact solution, but is
more epensive. The total computation time depends on the
software implementation of the different underlying
algorithms.
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Fig.3. Conwergencehigtory of different coupled problem solution dgorithms.
B. Jacobian derivation

The magnetic field equation yields a complex FEM
matrix system:
[KA +jH A(T')]A_EA(T'):O (14

with K, and Ha the matrices due to the diffusion and eddy
current term in (12). Fa contains the voltage driven source



This equation has to be split in the real and imaginary
component:
KaA _HA(T')A —Fp (T'):O (15
HA(T')A' +KaA —Fy (T'): 0
Likewise, the thermal equation yields:
KT -Fr (A; ' A'-T): (16)

with Kt the FEM matrix and Fr the joule lossterm.
The Jacobian for the non-linear system consisting of (15) and
(16) becomes:
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The blocks assciated with the eddy current term
contain the temperature dependent eledrical conductivity.
As this temperature is obtained on the therma mesh,
projedion is required. These same derivatives siow up in
the different sourceterms aswell:
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The heat density term also depends on the magnetic field,
dueto the eldy current losscontribution.
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It is assumed that the dement’s material parameters are
modell ed by constants within the first order element’s range.
To corred the quantity, the average temperature is used,
yidding the folowing expresson for the derivative
asgciated to a certain node:
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Thejoule lossexpresson is:
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The Jacobian matrix constructed in this way, has the
structure of Fig. 4, in which the different blocks can be
identified.
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Fig.4. Fill-in pattern of the Jcobian matrix of the bexchmark problem.

The @ndition numbers in this example problem range
from 10° to 10, being rather high. The dgenvalue
distribution (Fig. 5) is complicated, yielding a Sow
convergence The diagonal magnetic and thermal subblocks

have condition numbersof about 10°-10%.
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Fig.5. Eigenvaluedigtributionof the Jacobian matrix in the phase plane.

C. Discusson

The Jacohian-free quasi-Newton implementation, written
in terms of the dedrical conductivites and loss densities of
the dements has a comparable mnvergencebehaviour. In its



implementation, it is not required to split the time-harmonic
problem into a real and imaginary component as required for
the Jacobian. It is also posshle to use more mmplicated
material models and loss calculation agorithms in (22) and
(24). The problem of the ill -conditioned Jacohian is avoided
due to the block arrangement. The accderation of the
algorithm due to the parall €li sation seens to compensate for
the Jacobian approximation error.

V.CONCLUSION

Full Newton algorithms require the cmposition of a
Jacobian matrix, for which a general methodology isoutli ned
here.  This involves the incluson of field quantities
projedion equations, joule and eddy-current loss calculation
expressons and non-linear thermal dependencies of material
characteristics, such as the dedrical conductivities. The
numerical properties, with resped to the iterative linearised
system solution of the resulting corredion equation are
discused.

An approximate (quasi-)Newton method, having the
advantage that the Jacobian matrix has not to be computed
explicitly, is presented. This approach uses a difference
approximation for Jacobian-vedor products, as occurring in
iterative solvers algorithms such as GMRES. A block
ordering of the cmupled problem equations enables a fast
paralld implementation of this approach. An aternative
formulation of the wupled probem in terms of eement
material quantities and loss vedors, yieding a minimal

number of non-linear solution variables, is used to limit the
memory requirements of this algorithm.

The advantages and drawbacks of these methods are
discussed and ill ustrated using a conductive heating problem.

ACKNOWLEDGEMENT

The authors are grateful to the Belgian “Fonds voor Wetenschappelij k
Onderzoek Vlaanderen” for its financial suppat of this work and the Belgian
Ministry of Scientific Research for granting the IUAP No. P4/20 on Coupled
Problemsin Eledromagretic Systems. The research Council of the K.U.Leuven
suppatsthe basic numerical research
J. Driesen hdds a research grant of the Belgian “Fonds voor Wetenschappelij k
Onderzoek — Vlaanderen”.

REFERENCES

[1] P. Eustache, G. Meunier, JL. Coulomb, “Finite dement Todbox for
Generic Coupling (magnetic, thermal, etc.),” IEEE Trans. on Magretics,
vol. 32, no. 3, 1996 pp. 1461-1464

[2] P. Molfino, M. Repetto, “Fully Coupled ‘Quas Axisymmetric'’ Magneto-
Thermal Modd for Skin Effeds Analysis in Resigtive Tokamak Coils”
IEEE Trans. on Magretics, val. 25, no. 5, 1989 pp. 39403942

[3] JM. Ortega, W.C. Rheinbddt, Iterative solutions of norlinear equaions
in seveal variables, Academic PressNew Y ork, 1970.

[4] D. Lederer, H. Igarashi, A. Kog, “The Newton-Raphson Method for
Complex Equation Systems” Proc. 7th Int. IGTE Symposium on
Numerical Field Calculation in Eledrical Engineeing '96, 23-25
September 1996 Graz, Austria, pp. 391-394,

[5] R. Barrett et a., Templates for the Sdution o Linear Systems: Building
Blocks for Iterative Methods, SIAM, 1994

[6] JE. Dennis, R.B. Schabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations SIAM, 1983

[71 P.N. Brown, Y. Saal, “Hybrid krylov methods for noninear systems of
equations” SIAM J. Sci. Stat. Comp., vol. 11, no. 3, 199Q pp. 450481

[8] J. Driesen, R. Belmans, K. Hameyer, “ Adaptive relaxation algorithms for
thermo-eledromagnetic FEM problems,” |EEE Trans. on Magretics, vol.
35, no. 3, 1999 pp. 16221625



