X. Feng

Teco-Westinghouse Motor Co.

e = R&D Center
e smman PO Box 0277, 5100 N. IH-35

Helsinki University of Round Rock, TX 78628, USA

Technology Tel: +1512 218 7608
Espco Finland Fax: +1 512218 7565
Email: feng.xueqing@ieee.org
ABSTRACT

This paper presents the torque vector control technique
using a neural network controller for a synchronous
reluctance motor. As the artificiai neural network
controller has the advantages of faster execution speed,
harmonic ripple immunity and fault tolerance compared
to a DSP-based controiler, different muiti-fayer neural
network controllers are designed and trained to produce a
correct target vector when presented with the
corresponding input vector. The trained resuit and
calculated flops show that although the designed three
layer controller with tansig, purelin and hard limit
functions has more processing layers, the neuron number
of each layer is less than that of other kinds of neural
network controller, thus requiring less flops and yielding

£ a

faster execution and response.

Keywords: neural network, field oriented control, variable
speed drives.

=
7
=
I
Q
=
o
)
-
s
=
2

In this paper, a brief review of neural networks is introduced
first. Then an existing torque vector control scheme is
discussed. The control system consists of three units: flux
observer, switching unit and speed controller. The three phase
currents and voltages are chosen as inputs of the flux observer
to achieve the torque produced by the rotor and the stator
fluxes accounting for their position and magnitude. These
signals are supplied to the switching unit and its outputs are
the control of the voltage source inverter. As the artificial
neural network controller has the advantages of faster
execution speed, harmonic ripple immunity and fault tolerance
compared to a DSP-based controller, different multi-layer
neural networks are designed and compared. For an optional
switching unit, two layer neural network controllers with log-
sigmoid and perceptron neuron layers having a hard limit
transfer function, are designed. Using the perceptron learning
rule, the weights and biases of the neurons are trained to
produce a correct target vector when presented with the
corresponding input vector. The trained result shows that the
input layer at least has 13 log-sigmoid neurons and output
layer has 3 perceptron neurons. The sum-squared error reaches
zero when epoch equals 1262 and trained weights and biases
are obtained. Another two layer neural network with
hypertangent-sigmoid neurons as input layer and perceptron
neurons as output layer is designed. The input layer at least
has 11 hypertangent-sigmoid neurons and output layer has 3
perceptron neurons. The sum-squared error of the network

1CEM 2000 28-30 August 2000 Espco Finland

Torque Vector Control Using Neural Network Controller for
Synchronous Reluctance Motor

R. Belmar: & . Hameyer

Katholieke Universiteit Leuven
Div. ELEN, Dept. ESAT
Kard. Mercierlaan 94

B-3001 Leuven-Heverlee, Belgium

Tel: +32 16 32 1020
Fax: +32 16 32 1985
Email: ronnie.belmans@esat.kuleuven.ac.be

reaches zero with the epoch going to 1255. The corresponding
and trained biases and weights are also obtained. The third
designed and trained neural network controller is a three

B SRS AL BLUWRAANA LULiu Ul 15 4 uirec lﬂ_yCl
neural network with a back-propagation neuron layer as input

layer, an elementary Woldraw-Hoff neuron layer as hidden

layer and a perceptron neuron layer as the output layer. The

result shows that the input layer at least has 5 hypertangent-
sigmoid neurons, the hidden layer has 3 purelin neurons while

the output I.’/IVPT has 3 perceptron neurons. The sum- 5qumcu

error of the network reaches zero with the epoch is 2186.

Their related weights and biases are also obtained. To verify

the corresponding output signals of the designed and trained

three types of neural network controllers, simulation block
diagrams are designed and simulated digitally. The

corresponding output control signals and related input signals

are simulated and the results demonstrate that three kinds of
the designed and trained neural network controllers are

correct, Also, the calculated ﬂnpc show that the dumgucu three

layer neural network controller requires less flops. This means
that although the designed three layer controller with tansig,

purelin and hard limit functions has more processing layers,

the neuron number of each layer is less than that of other kinds
of neural network controller thus requiring less flops and
vmldmo faster exect

2 NEURAL NETWORKS

Building intelligent technical systems that can mode! human
behavior has always been a key target. Therefore, it is not
surprising that a technology such as neural networks has
created great interest.

Multi-layer artificial neural networks have been used
successfully for a wide variety of applications such as pattern
recognition, image and speech processing, control and
identification. It has been recognized that a controller based on
multi-layer neural network architectures offers a promising
way of handling complex control problems. Artificial neural
networks are computing architectures inspired by the
biological nerve system. They are useful in applications where
formal analysis would be extremely difficult or even
impossible. The behavior of a neural network is defired by its
architecture, the way its individual computing elements are
connected and the strength of those connections, or weights.
The weights are adjusted by training the network according to

a specified learning rule until it performs with the desired
error rate.

Neural networks are information processing systems. In
general, neural networks can be thought of as "black box"

devices accepting inputs and producing output signals. Some
of the operations that neural networks perform include:

- classificativii: an inp.t patten, (2 nassed to the network, and
the network produces a representaiive ('2ss as output;

- pattern matching: an input pattern is passed to the uctwori,
and the network produces the corresponding output pattern;

- pattern completion: an incomplete pattern is passed to the
network, and the network produces an output pattern that
has the missing portions of the input pattern filled in;

- noise removal: a noise-corrupted input pattern is presented
to the network, and this removes some (or all) of the noise
and produces a cleaner version of the input pattern as
output;

- optimization: an inpug pattern representing the initial values
for a specific optimization problem is presented to the
network, and the network produces a set of variables that

represents a solution of the problem,

- control: an input pattern represents the current state of a

controller and the desired response for the controller and the
output is the proper command sequence creating the desired

Neural networks consist of processing elements and weighted
connections (Fig. 1). Each layer in a neural network has a
collection of processing elements (PEs). Each PE in a neural
collects the values from all of its input connections, performs a
predefined mathematical operation called transfer functions
(typically a dot product followed by a PE transfer function),
and produces a single output value. The neural network in Fig.
1 has three layers: the transfer functions Fy, Fy and F
consisting of the PEs {X(, X3, ..., Xu}, {¥1, Y2, ---» Yo} and {zy,
Zy, ..., Z,} respectively from left to right. The PEs are
connec;ed using weighted connections. In Fig. 1 there is a
weighted connection from every PE Fy to every PE Fy, as
there is in the subsequent layer. Each weighted connection
(often synonymously referred to as either a connection or a
weight) both acts as a label and a value. The connection from
X, to y; is called weight w;,. The connection weights are
storing the information. The value of the connection weights is
often determined by a neural network learning procedure, but
sometimes are predefined and hardwired into the network. It is
through the adjustment of the connection weights that the
neural network is able to learn. By performing the update
operations for each of the PEs, the neural network is able to
recall information.

Fig. 1. Three layer neural network

There are several important features illustrated by the neyrg]
network of Fig. 1 that apply to all neural networks.

- Each PE acts independently of all others. Each PE's outpyt
relies only on its continuously available inputs from the
abutting connections.

- Each PE relies oniy on local information. The information
provided by the adjoining connections is all a PE needs to
process. It does not require the knowledge of the status of
any of the other PE's, not having an explicit connection.

- The large number of connections provides a large amount of
redundancy and facilitates a distributed representation.

The first two features allow neural networks to operate
efficiently in parallel. The last feature provides neural
networks with inherent fault-tolerance and generalization
quantities that are very difficult to obtain by other computing
systems. Furthermore, neural networks are able to learn
arbitrary non-linear mappings. This is obtained through proper
arrangement of the neural networks, introduction of a non-
linearity in the processing elements (i.e., adding a non-linear
PE function), and using the appropriate learning rules. This is
a powerful attribute.

There are three types of applications where neural networks
are particularly advantageous.

- applications only requiring a few decisions from a massive
amount of data (e.g., speech and image processing);

- applications where non-linear mappings must be
automatically acquired (e.g., loan evaluations and robotic
control);

- applications looking for a near-optimal solution to a
combinatorial optimization problem rapidly (e.g., airline
scheduling and telecommunication message routing).

In a broad sense, neural networks consist of three principle
elements: topology, learning and recall. Topology means how
a neural network is organized in layers and how these layers
are connected. Learning explores how a neural network is
trained and related information is stored. Recall shows how
the stored information is retrieved from the network.

PE transfer functions, also referred to as activation functions
or squashing functions, map a PE’s (theoretically) infinite
domain to a pre-specified range. Although the number of PE
transfer functions possible is infinite, five are regularly
employed by a majority of neural networks: linear, step, ramp,
sigmoid and Gaussian.

The most appealing quality of a neural network is its ability to
learn. Learning, is defined as change in connection weight
values resulting in the capture of information that can be
recalled later. Several procedures for changing the values of
connection weights, i.e. learning methods are developed:
Hennian Correlations, Principal Component, Differential
Hebbian, Competitive, Min-Max Classifier, Error Correction,
Reinforcement and Stochastic Learning.

The wide range of learning procedures emphasizes the
analysis and storage of information on target pattern. The
emphasis of the recall techniques is on retrieving information

already stored in the neural network. The feed-forward and
feedback recall are two broad categories.

The principle topologies, learning algorithms and recall
dynamics are the main elements of neural networks.

3 TORQUE VECTOR CONTROL OF A
SYNCHRONBOUS RELUCTANCE MOTOR
The torque vector control scheme of a synchronous reluctance
motor is shown in Fig. 2. The main units are the speed
controller, the look-up table for switching, the stator flux
amplitude, position and torque calculations and the voltage-
source inverter. The torque vector control is based on the
estimation of the torque and the amplitude and position of the
stator flux. The three-phase currents and voltages are chosen
as inputs of the stator flux magnitude, position and torque
calculation unit. The difference between speed reference and
actual speed is fed into a speed controller and the output is the
value of the torque reference. The error of the torque reference
and torque is supplied to a sign function unit to obtain the
torque control signal 7(-/, +1). The difference between stator
flux and stator flux reference is used to produce a stator flux
signal 4 (-], 0, +1). The torgue control signal, stator flux
signal and stator position signal are transferred to a look-up
table for switching, and its outputs are the control signals of

the voltaoe sourca inv nling tha d~ biic an 1. .

o ~ L PR o
oltage source inverter linking the dc bus and the motor.

Stator flux
~yamplitude y ¢ =
postion 8 and

torque T,
calculation SRM

1o, (3//\—/

Fig. 2. Torque vector control of a synchronous reluctance motor

4 NEURAL NETWORK CONTROLLER FOR
OPTIONAL SWITCHINGS

In the torque vector control of synchronous reluctance motor
the optional switching pattern is used for connecting the three
phase windings to the d.c. bus in order to produce the
corresponding six voltages uy, uy, us, uy, us, and ug (Fig. 3).
The input signals of the look-up table for the optional
switching are the stator flux sign (A=-1, 0, +1), torque error
sign (7=-1, +/) and the stator flux positions (6). Its output
singles is as shown in table 1 [1].

In the following, the focus is on the design of the two or three
layer artificial neural network controllers.

Table 1 (the values of u,~ug are as shown in Fig. 3b)

=+l Juw bey fue fue e Jus fus Jue Jue fu {u u
A=+1 T=-1 fue Ju ju Ju ju fu o fu fue fu fus Jus
T=+1 u w w us us Us Us 0 w U U u
A=0
1=-1 us U s u U u: uz u us w w us
T=+1 uz u; sy W w us us U U W w u;
A=-1
=1 fu fu Jw Ju Je Ju Fu Ju Ju fu Jo [uw
Stator flux ~ B0~ Jo0°~ 190"~ [120°-]150°~[180°-210°~ 40"~ 270"~ [300°~ 330°~
L o o " o " " " o | 3300 360°
osition (6) 307 60° 90°| 120° 150°| 180°] 210°f 240°f 270°} 300°f 33

(JL

DC bus g:

—0 lc»——«-
<

!
[

O;

c

|
v lw
J

oy
)

y

(a) Six pulse PWM inverter

u4<0,1,‘1'> \/ T w00
"""" 7% J
\\v / \‘1/’, ;
us (0,0, 1)~ ._.- e
5 ug (1,0, 1)

toique vector control

4.1 Perceptron neuron layer

The perceptron neuron layer, having a hard limit transfer
function, is trained by the so-calied perceptron learning rule.
Each external input vector is weighted using an appropriate
weight w. The sum of the weighted inputs is sent to the
transfer function, which also has an input of / transmitted to it
through the bias b. The transfer function, hardlim, returns a 0
or /. If the bias b is not used, the perceptron neuron produces a
1 if its net input is larger than 0, otherwise a (. If a bias b is
present, the function is shifted to the left by an amount b. The
hard limit transfer function gives a perceptron the ability to
classify an input vector by dividing the input space into two
regions. Output vectors are either 0 or /, depending on the
classification of the input. The output of the switching unit is
either / or 0, corresponding to switch turn-on or turn-off
respectively.

4.2 Neural nerwork controller with log-sigmoid and
perceptron neuron layers

The logistic sigmoid, or log-sigmoid, activation transfer
function is often used with neurons being trained using the
back-propagation learning rule. It is used to map a neuron
input from interval (— ©, + oo} into the interval (0, + /).

Back-propagation was created by generalizing the Widrow-
Hoff learning rule to multiple layer networks and non-linear
differentiable transfer functions. Input vectors and
corresponding output vectors are used to train a network until
it can approximate a function, associate input vectors with
specific output vectors, or classify input vectors in an
appropriate way. The back-propagation learning rules are used
to adius[the wmohrc and biases of the networks in order to
minimize the sum squared error of the network. This is done
by continuously changing the values of the network weights
and biases in the direction of steepest descent with respect to
the error. Changes in each weight and bias are proportional to
the effect on that element on the sum-squared error of the
network. To train a network, vectors are n_resenred and the

output and error vectors are calculated. The sum of the

squared errors is evaluated. If the sum squared error for all
training vectors is less than the error goal, training stops

........ g VECIOIs 18 1C goal, iraming siops.

A neural network with log-sigmoid neurons as input layer and

perceptron neurons as satput layer is shown in Fig. 4,

tpul ;aycris

log-sigmoid neuron layer

[P TR and Bercentro
twork with log-sigmoid and perceptro

The input layer at least has /3 log-sigmoid neurons and output
layer has 3 perceptron neurons. Two layer neurons have been
trained and the sum-squared error of the network with the
epoch is shown in Fig. 5. The sum-squared error reaches zero

when epoch equals /262.

80Sum-squared error

0206 400 600 800 1000 1200 1400
Epoch

Fig. 5. Sum-squared error with epoch
4.3 Neural network controller with hypertangent sigmoid and
perceptron neuron layers

A neural network with hypertangent-sigmoid neurons as input
and perceptron neurons as output layer is shown in Fig. 6.

hypertangent-sigmoid
neuron layer

perceptron neuron layer

LV OCK

s ONIOZED0— .
N

Fig. 6. Neural network with hypertangent-sigmoid
and perceptron neurons

The input layer at least has // hypertangent-sigmoid neurons

and output layer has 3 perceptron neurons. Two layer neurons
have been trained and the sum-squared errcr of the network
with the epoch is obtained. As shown in Fig. 7 ihe sum-
squared error reaches zero when epoch equals /255.

70

1 uﬁ“r‘r'n m
600 800 }Cl)j:;&f)} kh’:lﬁbo 1400
Epoch

Fig. 7. Sum-squared error with epoch

Q
0

4.4 Neural network controller with hypertangent sigmoid,
purelin and perceptron neuron layers

A three layer neural network controller with hypertangent-
sigmoid neurons as input, purelin neurons as hidden and
perceptron neurons as output layer is shown in Fig.8.

hypertangent-sigmoid
neuron layer

purelin neuron perceptron
layer neuron layer

Fig. 8. Neural network with hypertangent-sigmoid,
purelin and perceptron neurons

The input layer has at least 5 hypertangent-sigmoid neurons,
the hidden layer has 3 purelin neurons while the output layer
has 3 perceptron neurons. Three layer neurons have been
trained and the sum-squared error of the network with the
epoch is shown in Fig. 9. As shown in Fig. 9, the sum-squared
error reaches zero when epoch equals 2/86.

Sum-squared error
40 .

35k PR e i :]
B0 i TR SRR
25h PO U O

20} RUTTR e

g SIMULATION ANIFCOMPARISON FOR THREE

iv 3 AFLN JRLNAZ SONJIVAR JRANVAIVLY K EAN PO SN
NEURAL NETWORK CONTROLLERS
To verify the corresponding output signals of the designed and

trained neural network controller, digital simulation
techniques are used. For log sigmoid-perceptron, the

ha hunartangat_mreald
hypertangent sigmoid-perceptron and the hypertanget-purclin-

perceptron neural network controllers, the same corresponding
output control signals related input signals can be simulated as

Th 1da with tha
shown in p‘" 10. The n"'p"t control anénala coincide with the

look-up table of switching control indicated in the Table 1.
The simulation results demonstrate that all three designed and
trained neural network controllers are correct and can be used

to replace the existing switching unit for the torque vector
control scheme for a synchronous reluctance motor.

When designing a neural network architecture for a particular
problem, it may be interesting to know how the number of
ﬂ\lating pGiK‘u uyuauuua \uupa; varies with the parameters of
the network such as the layer number, transfer functions and
neuron number. Less flops means faster execution and
response of the neural network. Table 2 gives the calculation

effort of the three kinds of the neural network controllers.

Table 2: Comparison of flops for three kinds of neural
network controllers

Neural Logsig Tansig Tansig+Purelin
network +Perceptron +Perceptron {+Perceptron

Flops 117478 121466 55+30+18

The flops show that the three layer neural network controller
with hypertangent sigmoid (tansig) layer as input, pure linear
(purelin) layer as hidden neuron and perceptron layer as output
requires less flops. Although the three layer controller with
tansig, purelin and hard limit functions has more processing
layers, the neuron number of each layer is less than that of
other kinds of neural network controller, thus requiring less
flops and yielding faster execution and response.

g 8.
Time (sec)

Fig. 10. Input signals and responses of neural network controller

6 CONCLUSIONS

For torque vector control with an artificial neural network a

controller with one input and one output layer has been
designed and simulated to replace the optional switching unit

¢ 4G siminatec o prall wie OpRIOhal SWHCHINE Univn.

Usmg different training methods such as Perceptron, Back-
propagation and different leamning rules, three kinds of the

o comect
neural network are designed and trained to produce correct

target control signals when presented with the corresponding
input signals. The weights and bias for different neuron layers

are obtained. The floating point calculations (flops) show that

a three layer neural network with hypertangent sigmoid
(tansig) transfer function as input layer, pure lincar (purelin)
transfer function as hidden layer and hard limit (hardlim)
transfer function as output layer requires less flops. The three
designed neural network controllers are digitally simulated.
The results show that the output signals of the neural network
controllers have a correct output compared to traditional
optional switching unit, i.e., the designed neural network
controllers are correct. The research on other control units
with neural network controllers is on the way and results will
be published.

REFERENCES

(1] L. BOLDEA, Z. X. FU and S. A. NASAR. “Torque
Vector Control (TVC) of Axially-Laminated Anisotropic
(ALA) Rotor Reluctance Synchronous Motors".
Electrical machines and Power Systems, vol. 19, 1991,
pp. 381-398.

