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Abstract  A new approach to represent the local change of material 
properties or source terms due to their non-linear characteristics is 
presented here.  The material function is given in terms of simple basis 
functions, allowing a higher order representation within the area covered 
by the finite element.  This approximation as a higher order material 
space has advantages for the treatment of saturable ferromagnetic 
materials and temperature dependencies of conductive and permanent 
magnetic materials.  It becomes possible to treat the material function 
space and the field solution as a coupled problem. 
 

INTRODUCTION 
 

 The finite element method is often used in computational 
magnetics with non-linear dependencies of the source term 
or material constant.  Based on the field solution, A non-
linear material tensor is determined.  Traditionally this 
tensor, being part of a coeff icient in the describing 
electromagnetic field equation, is assumed to be constant 
(zero order, therefore associated with a 1st order error) within 
the element’s span.  Hence, these terms, with a local field 
solution represented by FEM functions with the order of N, 
have an error order smaller than N+1 [1].  This yields lower 
accuracy when compared to pure linear equations.  It can be 
proved that the materials should be represented with an order 
of at least N-1 to maintain the same approximation accuracy. 
 

MATERIAL SPACES 
 

 It is possible to enhance the order of the material tensor 
by defining it as a weighted sum of simple basis functions.  
These functions can be of the same form as the finite element 
shape functions used for the FEM-field solution.  For 
instance, the 2D transient magnetic field modelled by means 
of the magnetic vector potential, is described by [2]: 
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The non-linear material coeff icients are written by : 
• Ferromagnetic materials: ( ) ( )∑=
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• Temperature and magnetic field dependent permanent 
magnet characteristics : ( ) ( )TAMNTAM
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(To determine the temperature dependencies, a coupled 
problem has to be solved [3].) 
 By using a Galerkin approach, the FEM matrices can be 
calculated.  For example, the matrix Hk for a triangular 
element with surface Ωe originating from the transient eddy 
current term, when first order elements for material and field 
are used, is given in (5).  The use of this higher order 
approach yields a more accurate joule- and eddy-current loss 

distribution. 
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 To assess the non-linearity in the iterative solution 
algorithm, whether it is due to a problem-own or a coupled 
problem dependency, several methods are possible: 
1. Point-collocation: Assess the non-linearity using the 

nodal solutions. 
2. Least-squares method: Minimise the quadratic error. 
3. Galerkin approach: Use test functions. 
The last two li sted approaches require a (sparse) system 
solution.  The size of this system depends on the number of 
elements having non-linear materials. 
 

APPLICATION 
 

To briefly ill ustrate the advantage of this approach, the 
magnetic and thermal field of a busbar are calculated for a 
coupled problem definition (Fig. 1).  The classical zero order 
approach material approach and the novel first order 
material space method with first order functions are used 
(Fig. 2). 
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Fig. 1: Magnetic and thermal field solution. 
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Fig. 2: 0th and 1st order material spaces. 
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