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Abstract - The performance of a full multigrid scheme featuring a 
hierarchy of unstructured and nonnested grids is compared to that of 
nested multigrid and that of preconditioned Conjugate Gradients. 

I. INTRODUCTION 

The basic idea of multigrid (MG) methods is to use a 
coarser discretisation to wipe out a low frequent error 
component during the iterative solution of a linear system 
related to a discretised partial differential problem [1]. If the 
concept is applied recursively, a hierarchy of finite element 
(FE) meshes is required. A full MG cycle is achieved if the 
coarser levels are also used to determine an initial estimate 
for the finer discretisations. 

Relevant electromagnetic models usually require 
unstructured meshes to resolve for all geometrical details 
(Fig. 1). Moreover, efficient adaptive mesh refinement 
algorithms rely upon aspect ratio enhancing techniques, such 
as restoring the original geometry, moving nodes to the 
centroids of their supports and swapping edges to obtain local 
Delaunay properties. As a consequence, the full MG scheme 
has to deal with restriction and prolongation operators 
between nonnested grids. 
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II. MULTIGRID SCHEME 

The defect computed on a grid is prolongated to a finer 
grid by a projection applying the shape functions to obtain the 
value at interior nodes [2]. To avoid searching in the mesh 
during the MG cycle, a prolongation operator is constructed 
in advance. Only dependences larger than a certain treshold, 
e.g. 1%, are admitted to the prolongation stencils. The 
connectivity of the periodic boundary conditions has to be 
taken into account in the prolongation operator. 

The MG cycle consists of 1 front Gauss-Seidel 
presmoothing step, the restriction defined by the adjoint of 
the prolongation, the coarse grid correction, the prolongation 
and 1 front Gauss-Seidel postsmoothing step. On the coarsest 
level an exact solve is performed. V-cycles are applied [1]. 

III. APPLICATION 

The MG solver is applied to a model of a synchronous 
generator with six salient poles (Fig. 1). Enhancing the mesh 
during adaptation improves the convergence of the global 
error (Table I). The quality of the mesh has a advantageous 
influence on the convergence of MG (Table II). The more 
expensive prolongation in the case of nonnested MG does not 
harm the performance compared to nested MG and 
preconditioned Conjugate Gradients (Table II). 
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le I. Comparison of the convergence of the global error of nested and 
nonnested mesh adaptation. 

ptation step Number of 
mesh nodes 

Error nonnested 
mesh adaptation 

Error nested 
mesh adaptation 

331 2.057e-01 2.057e-01 
1160 7.604e-02 9.154e-02 
4501 2.730e-02 3.717e-02 

17729 9.955e-03 1.141e-02 
70369 3.269e-03 4.917e-03 

280385 6.951e-04 1.339e-03 
 

ble II. Cumulative timings (in s) (and iteration counts) of nested and 
ested MG compared to Symmetric Successive Overrelaxation (SSOR) 

 Incomplete Cholesky (IC) preconditioned Conjugate Gradients (CG). 
 Nonnested 

MG 
Nested MG SSORCG ICCG 

4.80 (-) 4.80 (-) 0.25 (92) 0.29 (67) 
5.70 (19) 6.22 (44) 0.67 (176) 1.25 (113) 
8.39 (19) 9.72 (48) 3.29 (333) 11.00 (216) 

19.84 (19) 27.66 (78) 26.10 (653) 142.87 (434) 
77.69 (18) 117.19 (86) 241.09 (1286) 2220.33 (872) 

419.90 (17) 624.69 (92) 1970.24 (2540) - 
IV. CONCLUSIONS 

e nonnested full MG scheme combines a better 
rgence of the global error to faster iterative solutions of 
inear systems when compared to nested MG. MG 
rforms preconditioned CG. 
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