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1 INTRODUCTION

Several principles of magnetic bearings operation are known [1], but the principle based on the use

of electromagnets to provide the force necessary for the levitation of a rigid body is the most widely

used. The magnetic �eld has to be adjusted continuously to attain stable levitation and the re-

quired dynamics of the levitating body. This can be done only with controlled electromagnets. One

application are Active Magnetic Bearings (AMBs) where two pairs of radial bearings controlling

four DOFs are placed at each rotor end. The �fth DOF is controlled by a pair of axial bearings.

Rotation, i.e. the sixth DOF, is controlled by an independent driving motor. AMBs o�er signi�cant

advantages due to their non-contact operation. Higher speeds, no friction, no lubrication, weight

reduction, precise position control and active vibration damping make them far superior to the

conventional bearings. AMBs are therefore a typical mechatronic product and are particularly ap-

propriate for high-speed rotating machines. Commercial applications include pumps, compressors,


ywheels, milling and grinding spindles, turbine engines, centrifuges, etc.

The laboratory prototype of an AMB is presented in the paper. The mathematical model of

an AMB is determined separately for the mechanical and for the electrical part. The modeling is

restricted to the y{ axis. The dynamic model with lumped parameters is expressed in the time

domain. The model is coupled and nonlinear. The di�erential driving mode is introduced to

avoid the redundancy of input variables. Also, the linearized equilibrium point deviation model is

given. Its parameters are determined by the numerical analysis of the magnetic �eld [2] and by

measurements. The obtained model is used for control design [3]. Because of the decentralized

control, the same controller parameters are used for the y{ axis and for the x{ axis. A comparison

of experimental and simulation results for the control in y{ axis is shown along with experimental

results of high speed rotation. Basic mechatronic components of the experimental system are

brie
y described as well. At the very end, some important �ndings, di�culties and suggestions

with respect to the problem of active vibration damping are summarized.

2 MAGNETIC BEARING SYSTEM MODELING

2.1 Laboratory prototype

In this subsection the mathematical model of the laboratory prototype is presented. The system

consists of two axially allocated pairs of electromagnets, i.e. the vertical and the horizontal subsys-

tem. In Fig. 1 a) we can see the schematic presentation of the horizontal{shaft magnetic bearing

system with its geometry, and in Fig. 1 b) y{ axis of the AMB. The four input variables of the

system are voltages on each electromagnet winding. If rotation and elasticity of the shaft are ne-

glected, then the system has two DOFs. The two output variables of the system are shaft positions

in the x{ and in the y{ axis. The determination of the mathematical dynamic model is separated

into three steps. First, we write the equations of motion where several geometric relations occur

due to the axial allocation of actuators, sensors and weight. The next step of modeling deals with

the electromagnets. On the assumption that the iron core and coil windings are idealized we can

write the voltage equation for each electromagnet. In the last step we write the equations for the
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Figure 1: a) Schematic presentation of the horizontal{shaft magnetic bearing system, b) y{ axis of

the active magnetic bearings

electromagnetic force generated by each particular electromagnet excited by the coil current. Their

sum is the resultant electromagnetic force.

The system has only two independent DOFs, so we will restrict our further discussion to the

subsystem describing the y{ axis. It consists of two electromagnets with a serially connected pair

of coils. The subsystem shown in Fig. 1 b) is described by the mechanical equation of motion (1),

two voltage equations (2) where sign of the last term depends on the index (positive sign for h = 1,

negative sign for h = 2) and the equation of the resultant electromagnetic force (3). R is the resistance

of one electromagnet, L is the inductance of one electromagnet when the axis of the shaft is in the

center. k [Nm2
=A2] is the force coe�cient and ku [Vs/m] the coe�cient of the back{EMF. The

nominal air gap and equivalent shaft mass are denoted with � and m respectively.

m
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The AMB model given in the form of equations (1), (2) and (3) is multi-variable, coupled and

nonlinear. Let us assume constant model parameters. Voltages u1 and u2 are system inputs, the

position y is the output, and the common disturbance consists of the equivalent gravity force mg

and the load force fl. If we bear in mind that the system is totally controllable the redundancy

of input variables becomes evident. For its elimination we introduce the di�erential driving mode.

The bias current i0 is forced through the coils of both electromagnets. Considering the given

assumptions the resultant electromagnetic force f0 is zero. But as we know there always exist the

load force fl and the disturbances as well as the gravity force mg, we have to add the so-called

control current (i� � i0) in the upper coil and subtract it in the lower coil (4). In this way a

SISO system is obtained where the input variable is the so-called control voltage u� or the control

current i� in case of a current fed system.

i1 := i0 + i�; i2 := i0 � i� (4)

2.2 Linearized equilibrium point deviation model

Among the model equations (1), (2) and (3), only equation (3) is nonlinear. It is linearized in the

equilibrium point (i0; y0) where i0 is an arbitrary bias current and y0 the position of the shaft's axis



in the center (y = 0). Taking into account the �rst term of the Taylor expansion of equation (3)

about the equilibrium point the electromagnetic force is given by the well-known linear equation

(5). The current gain coe�cient ki [N/A] and the position sti�ness coe�cient ky [N/m] are de�ned

as (6). After rearranging equations (1), (2) and (5) the linearized AMB model is obtained (7). The

equivalent model in the input-output domain is de�ned by the transfer function (8).

f� = ki i� + ky y� (5)

ki :=
@f

@ i�

����
(i0;y0)

= 4k
i0

�2
; ky :=

@f

@ y�

����
(i0;y0)

= 4k
i
2
0

�3
(6)

ki i� + ky y� �m
d
2
y�

dt2
= 0

Ri� + L
di�

dt
+ ki

dy�

dt
� u� = 0

(7)

G(s) =
Y�(s)

U�(s)
=

ki

mL s3 +mR s2 + (k2i � kyL) s� kyR
(8)

Gmech(s) =
Y�(s)
I�(s)

= ki
m s2�ky

Gel(s) =
I�(s)
U�(s)

=
m s2�ky

mL s3+mR s2+(k2
i
�kyL) s�kyR

(9)

The parameters of the linearized equilibrium point deviation model of the laboratory prototype of

active magnetic bearings are shown in Table 1. Current gain and position sti�ness are calculated

by the numerical analysis of the magnetic �eld [2] using the �nite element method (FEM). The

calculated results have been compared with the measured values.

Table 1: Parameters of the linearized model in equilibrium point (i0; y0)

data parameter value determination

resistance R [
] 0.6 measured

inductance L [H] 0.0048 measured

equivalent mass m [kg] 5 measured

current gain ki [N/A] 32.7 FEM

position sti�ness ky [N/m] 108350 FEM

bias current i0 [A] 2.5 free parameter

nominal air gap � [m] 0:6�10�3 construction data

3 CONTROL

GconY

i�ref

GconI Gel
Gmech

y�ref u� i� y�

Figure 2: Control structure of the system

This AMB represents unstable system, therefore we need a closed-loop control system to stabilize

it. The cascade structure has been used (Fig. 2). In the inner loop the current controller GconI(s)

is responsible for the best possible reference current tracking. Let us assume that the latter is

perfect. Then it is enough to use only the mechanical transfer function Gmech(s) (9), de�ned by

two real poles (s1;2 = �164:58), for the further position controller design. A PID controller (10) has

been used for stabilization purposes. Its parameters are de�ned by increasing the amplitude of the



frequency characteristic at low frequencies, and by trying to attain an adequate phase margin for

the chosen cross frequency in case of high frequencies. As the system consists of two independent

DOFs decentralized control has been implemented. Therefore the same controller parameters has

been used also for the x{ axis. The position controller was set up as follows: controller gain

Kcon = 10000, integral time constant Ti = 0:03 s, derivative time constant Td = 0:003 s and

parasitic derivative time constant T 0

d = Td=10.

GconY (s) = Kcon
s Ti + 1

s Ti

s Td + 1

s T 0

d + 1
(10)

4 SIMULATION AND EXPERIMENT

In simulations (MATLAB { Simulink) all parts of the experimental system shown in Fig. 3 a) were

considered in addition to the nonlinear actuator model (Fig. 3 b). Let us describe some parts

of the system. First, the inductive position sensor with a sensitivity of 7.7 mV/�m and 20 kHz

cut-o� frequency was chosen very carefully. An additional �lter for sensor cross-talk elimination

was implemented afterwards at 5 kHz. Next, the analogue current controller and a 20 kHZ PWM

switching ampli�er were used with a 300 VA per channel. Finally, the digital PID position controller

with anti-windup was implemented into the power PC environment with a sampling time of 100 �s.

a) b)

Figure 3: a) Experimental system and b) laboratory prototype AMB

Fig. 4 shows the comparison of calculations and measurements on the laboratory prototype. Only

the comparison of control in the y{ axis is shown. It is obvious that the agreement of results is very

good { excellent damping agreement and acceptable sti�ness disagreement. However, the result

for the stability test was quite di�erent. The upper stability limit of the experimental system was

much lower than the one we established theoretically. This means that we can not achieve a very

high sti�ness. The reason for this are the actuator limitations. As a result, insu�cient forces are

generated for a wide range of shaft positions. This conclusion is con�rmed by FEM calculations

and measurements of the f(i�; y) relation. In Fig. 5 the results of the rotation test, where the

position error does not exceed �15 �m, are also presented. In Fig. 5 b) the shaft elasticity problem

turns up in addition to the rotor unbalance problem which is more evident in Fig. 5 c).

5 CONCLUSION

The paper deals with the modeling and the analysis of AMB laboratory prototype. If we take into

account that the system has two independent DOFs, then the analysis of the model is restricted

to the y{ axis. The di�erential driving mode is introduced and the linearized equilibrium point

deviation model is written. Its parameters are measured and calculated by the numerical analysis of

the magnetic �eld. The PID controller design of the y{ axis is included. Because of the decentralized

control, the same control design is used also for the x{ axis.
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Figure 4: The position response of y{ axis from the equilibrium point: a) to the reference

step function (0.2 mm) and b) to the load step function (60 N)
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Figure 5: The experimental position response: a) at 3890 rpm, b) at 6600 rpm and c) at 8040 rmp

The presented work represents one of the �rst steps in the research of modeling, analysis and

control design of AMB at our institution. Although we used one of the most simple control methods

we came to the following important conclusions:

� the rigidity of the system is increased by a higher bias current i0 and controller gain Kcon

� the system dynamics is improved by an appropriate derivative time constant Td
� the in
uence of disturbances is reduced by an appropriate integral time constant Ti
� the system sti�ness insu�ciency is caused by actuator limitations, therefore an appropriate

actuator should be carefully chosen with respect to the expected load forces and available

power supply or vice versa

� the non-modeled dynamics of the shaft elasticity and unbalanced rotor becomes evident at

the so-called critical speeds and this is why the control design for active vibration damping

should also employ the non-modeled rotor-dynamics.
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