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ABSTRACT 
 The magnetic material's deformation caused by magnetostriction is represented by an 
equivalent set of mechanical forces, giving the same deformation to the material as magnetostriction 
does. This is done in a way similar to how thermal stresses are usually incorporated into stress analysis. 
The resulting magnetostriction force distribution can be superposed onto other force distributions 
(external mechanical forces, magnetic forces) before starting the mechanical deformation or vibration 
analysis. This procedure is incorporated into a weakly coupled cascade solving of the 
magnetomechanical problem. 
 
1. INTRODUCTION 
 An important source of vibrations and noise in electric devices, rotating as well as non-rotating, 
are the deformations caused by magnetostriction (MS). These MS deformations can be of the same 
order of magnitude as the deformations caused by reluctance forces (Maxwell stresses) on the iron-air 
interface [1]. The incorporation of the MS effect in the numerical design process is usually impaired 
since detailed data on the magnetic material behaviour are difficult to obtain. Versatile experimental 
methods to obtain all needed technical data on MS effects, permeability, losses, etc. are reviewed in [2]. 
Once the MS behaviour of the material is known, it has to be incorporated in the magnetic and 
mechanical analysis. The coupled magnetomechanical finite element model [3] is briefly reviewed and 
it is illustrated how to use this model to take the MS material characteristic into account by a set of MS 
forces. The MS material characteristic, e.g. in λ(B) form (MS strain λ as a function of magnetic flux 
density B) is assumed to be known. 
 
II. THE MAGNETOMECHANICAL SYSTEM 
 Both magnetostatic and elasticity finite element methods are based upon the minimisation of an 
energy function. The total energy E of the linear electromechanical system is the sum of the elastic 
energy U stored in a body with deformation a [4] and the magnetic energy W stored in a magnetic 
system with vector potential A [5]: 
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where K is the mechanical stiffness matrix and M is the magnetic ‘stiffness’ matrix. Considering the 
similar form of the energy terms in (1), the following system of equations represents the numerically 
coupled magnetomechanical system: 
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where T is the magnetic source term vector and R represents external forces (not of electromagnetic 
origin). The partial derivatives of the total energy E with respect to the unknowns [A  a]T identify with 
the combined system (2): 
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Using (2), (3) and (4), the coupling terms D and C are recognised as 
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The coupling term D is related to the elastic energy U  by  
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and represents the increase in elastic energy U due to an increase in the magnetic field A, with 
deformation a held constant. This is caused by magnetostriction in the following way: 
• Imagine an element with deformation a0 and flux density B0. 
• When the flux density in the element increases to B0+∆B, the element expands (or shrinks) to a0+∆a 
due to magnetostriction (no external stresses need to be applied, ∆U = 0, ∆a ≠ 0). 
• In order to find the elastic energy change ∆U due to ∆B but for constant deformation, the element 
needs to be shrunk (or expanded) back to its original deformation a0=a0+∆a–∆a. The work done by 
external stresses to go back from a0+∆a to a0 is exactly (7) (now ∆a = 0, but ∆U ≠ 0, a ≠ 0 and so 
D ≠ 0). 
The term D is used to represent MS in a strong coupling scheme [6], but will not be considered further, 
since here MS is dealt with by a weak coupling procedure. The weak coupling (D ≈ 0) suffices for the 
commonly used materials with MS in the range of λ ~ 10–6 m/m, but strong coupling is needed for 
materials with higher λ. 
The coupling term C (6) represents the dependency of magnetic parameters in M on the mechanical 
displacement a. Right-multiplying C by vector potential A immediately renders all magnetic forces Fmag 
(Lorentz forces as well as reluctance forces): 
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where the last equation expresses virtual work. The approach presented here is extended to the non-
linear magnetic case in [3]. 

 
Fig. 1. Magnetostriction characteristics of non-oriented 3% SiFe (solid lines, as a function of tensile 

stress) and M330-50A (dashed lines, for rolling and transverse direction). 
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Fig. 3. Magnetic field for one pole of 

a six-pole synchronous machine. 
B

 
 

 

ig. 2. The set of forces (right) representing the strain 
caused by magnetostriction due to the magnetic field 
 (left), consists of a set forces parallel to B and a set 

forces perpendicular to B. 
 
. MAGNETOSTRICTION FORCES 
.1 Concept 

When the coupling term D is not used (D = 0) and the magnetic forces Fmag = –CA are shifted to 
e right hand side of (2), the system becomes uncoupled: 
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ow MS effects are built into the analysis using a force distribution Fms that can be added to R and 
mag. By magnetostriction forces Fms we indicate the set of forces that induces the same strain in the 
aterial as the magnetostriction effect does. This approach is similar to the use of thermal stresses due 
 heating [7]. In calculating thermal stresses, the thermal expansion of the free body (no boundary 
nditions) is calculated based on the temperature distribution, and the thermal stresses are found by 

eforming the expanded body back into its original shape (back inside the original boundary 
nditions). In calculating MS forces, the expansion of the free body (no boundary conditions) due to 
agnetostriction is calculated based on the magnetic flux distribution, and the MS forces are found as 
e reaction to the forces needed to deform the expanded body back into its original shape (or back 
side the original boundary conditions). 
or FE models, this can be done on an element by element basis. The midpoint (center of gravity) of the 
ement is considered to be fixed. The MS deformation of the element, i.e. the displacement of the 
odes with respect to the midpoint, is found using the element’s flux density Be and the λ(B) 
aracteristic of the material. If a set of λ(B,σ) characteristics are given, one has to be chosen for the 
propriate value of tensile stress. 

.2 Strain for Isotropic Materials 
Fig.1 shows a typical MS characteristic for isotropic 3% SiFe (solid lines) as a function of 

nsile stress. For isotropic materials, the local xy-axis of the element are rotated so that the flux density 
ector B coincides with the local x-axis. The strains λx and λy in the local frame are then given by 
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here λ=λ(B) is the MS strain in the direction of B (x-direction) and λt is the MS strain in the 
ansverse direction (y and z-directions). Usually, magnetostriction will leave the total volume and 
ensity unchanged [8], so that λy = λz = –λx/2. This volume invariance is equivalent to a 
agnetostrictive 'Poisson modulus' of 0.5, which is bigger than the mechanical Poisson modulus of 
out 0.3. Therefore, when the MS deformation is represented by a set of mechanical forces in the 

irection of the vector B, there is always a set of forces perpendicular to B to correct this difference in 



 

 

Poisson modulus (Fig.2). In a 2D plane strain analysis, the thickness (z-direction) of the material has to 
remain constant and an additional tensile z-stress needs to be applied in order to obtain λz = 0. This 
adjusts the values (10) to 
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where ν is the mechanical Poisson modulus of the material and λt = –λ/2. 

3.3 Strain for Anisotropic Materials 
 Fig.1 shows a typical MS characteristic for anisotropic M330-50A steel (dashed lines) for 
rolling direction and transverse direction. For anisotropic materials, the flux density vector is 
decomposed into a Bx and a By component in the element’s local xy-axis, arranged so that the x-axis 
coincides with the rolling direction, and the y-axis with the transverse direction. The rolling direction 
curve λRD(B) is then used with Bx as input, and the perpendicular direction curve λPD(B) with By as 
input, giving 
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A similar correction as above can be made for the plane strain case. 
 
3.4 Displacement 
 Still working in the local xy-axis, the strains λx , λy are converted into a displacement ams = 
(ax,i , ay,i) considering the midpoint of the element (xm , ym) as fixed: 
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where i indicates the three element nodes with co-ordinates (xi , yi). 
 
3.5 Magnetostriction Forces 
 The mechanical stiffness matrix Ke for an element gives, after multiplication with the MS 
displacement ams of the nodes, the nodal magnetostriction forces 

 ms
ee
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Equation (14) has to be performed element by element (using Ke) and not for the whole mesh at once 
(using the global matrix K), because the N different displacements ams,j , j = 1...N, due to MS in the N 
elements surrounding a node, should not be summed. First they are converted into MS forces and then 
the N forces Fe

ms on one node are summed. 
 The MS forces are now introduced in (9) giving 
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First, the magnetic equation of system (15) is solved to give A, from which the magnetic forces Fmag are 
calculated using (8) and the MS forces Fms using (14). Then the mechanical equation of (15) is solved 
to give deformation a due to all forces. The force distribution Fms or the total distribution Fmag+Fms can 
also be used for any other kind of post-processing based on force distributions, e.g. calculating mode 
participation factors with stator mode shapes [3]. 
 
4. EXAMPLE 
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ig. 4. Magnetostriction forces on stator for 
a) isotropic non-oriented 3% SiFe, b) 

anisotropic M330-50A
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