Adaptive M esh Generation M ethods for Coupled Field Problems

Abstract — This paper discuses methods to produce
adaptively refined finite dement meshes, to be used in
coupled field problems. Error estimation information from
one subproblem mesh is transferred using a projedion
methods to the other meshes and combined, by means of
different types of mathematical averaging, with the other
error vedors before refinement is performed. In this way,
mesh compatibility is aswured to maintain the required
accuracy in the wupled problem. This approach is
applicable to multi-physics problems such as coupled
eledromagnetic-thermal problems involving eddy current
losses and multi-harmonic problems of the same physical
nature.
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1. Introduction

Coupled problems smulated using the finite dement
method (FEM), are best solved on individual meshes
(Eustache, 1996, since the physical redity of the
subproblem imposes different boundary conditions and
acauracy requirements and since the subproblem domains
often only have a part of the model in common. These
meshes are usually constructed in advance Occasionaly,
they are adaptively refined on an individual basis, but
thereby neglecting the associated coupled problem. It can
be necessry to localy apply different types of finite
elementsin the individual subproblem.

The use of entirely identical meshes is therefore not a
goad idea. ldentical meshes mean wasting elements and
therefore an increase of the mmputational efforts. For
example, if one subproblem has a rather smoath solution
and the sensitiviti es of the other subproblems with resped
to the solution in this region are relatively low, the use of
a fine mesh for this subproblem is not necessry.
Sometimes a mesh is constructed locally too fine for
numerical reasons e.g. to oltain high quality ements in
the transition between coarsely and fine meshed regions
for one subproblem. If these requirements are not relevant
for other subproblems, then this mesh does not have to be
as fine as the other. It is posshle that strategies to
enhance the geometric mesh quality yield dightly different
local meshes.

Asauming no singularities are present in the vicinity of
the dement, the order of the aror for the FEM model can
be expressed as a proportionality in terms of a relevant
characteristic dement size h and the polynomial order of
the dement p by (Zienkiewicz, 1994:

e~0(h*) (1)
Overlapping mesh parts with significantly different

edement size should be avoided or the dement
approximation must be of an appropriate polynomial

order. Infact, the owrall accuracy of the mupled solution
is determined by the lowest acauracy of the individual
subproblems considered.  When the polynomial order of
the dements is locally the same, the sizes may not differ
significantly. This property, which can be @lled ‘mesh
compatibility’, has to be kept, even after mesh refinement.
To prevent the generation of incompatibiliti es, error
information has to be transferred from one mesh onto the
other during the adaptive mesh generation process

2. Err or information transfer

A. Method principle

When a subproblem-spedfic eror estimator indicates
that it is required to refine the mesh in a particular
location, this information needs to be transferred to the
mesh of the other subproblem and combined with the
locally estimated error. This must be performed in such a
way, that the local normalised error will increase when
refinement is drictly required in the other assciated
subproblem. Mathematically, this error can be interpreted
as a field quantity expressed per element. For the total
mesh of subproblem i, the vedor of local element errors
{e} isohtained and is normali sed.

Fig. 1 illustrates a methodology (for two coupled
subproblems) to maintain a higher degree of mesh
compatibility. The eror information vedors of the

individual problems are projeded to the other subproblem
mesh. Hence an approximate local error estimation for
all the involved subproblemsis avail able in every submesh
element to be omhbined to form a global estimate.
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B. Error combination

The ‘combination’ of the aror vedors is obtained by
averaging the normalised errors. This averaging, yielding
anew set of normali sed vedors, may be (for n subfields):

1) algebraic:
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2) quadratic:
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3) geometric:
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In the weighted averages, the weight w; can be fixed to
be dominant. The quadratic mean streses extreme
values: if the eror is sgnificant in one subfield, this is
retained in al fields. This expresson can guarantee a
high degree of ‘mesh compatibility’. To a lower extent,
the algebraic mean has the same property. The geometric
mean smoathes the dement errors: the elenent only gets a
large aror estimate when it has sgnificant errors in all
subfields. A high combined value may therefore indicate
a localy strong mutual dependence if appropriate eror
estimatorsfor theindividual problemswere seleded.
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C. Projection implementation

The projedion operation for the eror quantities,
interpreted as a piecewise @ntinuous low-order field in
case of zero-order estimates can be implemented in two
ways:

1) Interpolation: An average over the destination
element’s area is calculated using numerical integration

by means of appropriate Gauss points (this technique @n
be used to transfer losses and other low-order fields
(Driesen, 1998.

e(Qe)=Qie Z % [ (N ) E ®)

2) Least-squares or weighted residual method: An
alternative way to transfer the eror information from one
mesh, associated to subproblem i3, onto another mesh,
associated with subproblem i, is a least-squares fit. The
quadratic difference eror fied, written as a weighted sum

of shape functions N> and N,? , is minimised for every

unknown error term € :
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Thisyields:
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Eg. (10) can be interpreted as a weighted residual. The
gparse system to be solved contai ns building blocks simil ar
to those found in FEM systems.
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The integrals in the right-hand side expresson are to
be evaluated numerically as they contain partialy
overlapping shape functions (Fig. 2). In the @se of zero
order errors, the interpolation and least-squares
approaches become identical. For higher order estimates,
the sparse ejuation system hasto be solved.

Fig. 2. Related mesh elements in a projection operation; some
Gausspoints for numerical integration are indicated.



3 Applications

A. Electromagnetic-thermal problems

The presented adaptive mesh refinement technique is
used in coupled dedromagnetic-thermal problems. In
this type of problems, different meshes have to be used
because of the different physical properties of the cmupled
problem’s sibdomains. For instance the air region is
entirely discretised for the magnetic field as it carries the
leakage flux. In genera, this part is replaced by
convedive boundary conditions for the thermal probem
definiti on.

The joint problem is often solved first on a set of
meshes generated by an initial solution of the problemsin
an uncoupled way. This leads to a (smple€) initial mesh
with a sufficient quality to start up the wupled problem.
In a next step, the problem is ©lved in a coupled way,
with h-adaptive refinements.  This coupled problem
solution can be obtained by means of substitution or
(quasi-)Newton algorithms (Eustache, 1996, (Driesen,
2000, (Moalfino, 1989.

The example discussed here is a conductive heating
problem. A sguare shaped tube nstructed out of
eledricaly conducting material heats a fluid flowing
internally through the ding channel. The surrounding
air isincluded in the magnetic domain (Fig. 3a). In the
therma domain, convedive boundary conditions are
present internally and externally (Fig. 3b). Due to skin
effed, the arrent and lossdensity is distributed over the
crosssedion. First order triangular elements are used for
the field solution. The non-linear material characteristics
and loss densities are assimed to be uniform within a
finite dement (zero arder approximation).
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Fig. 3. Coupled problem domains.

The eror estimator used for the thermal problem is
based on the difference of the thermal gradient or the heat

flux through an element as an indication for possble
temperature differences. An adaptive refinement of the
thermal problem by itself would achieve a mesh that is
mostly refined in the vicinity of the @mding channel.

The magnetic field error estimator is chosen to yield an
acaurate loss density distribution. Therefore, the
difference between the airrent densties is used for the
error estimation. As «in effed is considered, afine mesh
in the onductor part close to the surface is obtained,
which is sgnificantly different from the mesh defining the
thermal field problem.

Thisisillustrated in Figures4 and 5. In the refinement
dstrategies used, the projedion is implemented as
interpolation.

When the thermal error estimation is dominant (e.g. a
large weighting coefficient in (3)) the meshes of Fig. 4 are
obtained. The magnetic fidd is refined close to the
channel due to the thermal error transfer. The skin region
is only refined in the crners, where the (non-dominant)
magnetic aror estimates are large in magnitude.

(a) magnetic field mesh

(b) thermal field mesh

Fig. 4. Meshes obtained using adaptive refinement with a large
weight for the thermal field error estimation.

On the other hand, when the magnetic aror estimation
dominates, the skin regions will contain most of the
elements in compatible thermal and magnetic meshes

(Fig. 4).
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(a) magnetic field mesh

(b) thermal field mesh

Fig. 5. Meshes obtained using adaptive refinement with a large
weight for the magnetic field error estimation.

To oltain an acaurate wupled solution, it is important
that the mesh in the mnductive region stays compatible
and be refined bath, close to the skin and in the vicinity of
the @ding channd. The result of the combined error
estimation is shiown in Fig. 6. To oltain these meshes, the
quadratic averaging (4) is used, with equal weights for
bath subproblem error estimations.

(a) magnetic field mesh

(b) thermal field mesh

E\P' 6. Meshes obtained using adaptive refinement with an
equal weight for the magnetic and thermal field error estimation.

To oltain these meshes, four refinement steps were
employed. In each step, the number of dements is
approximately doubled by refining the dements with the
largest scaled combined error. After the refinement, extra
mesh enhancing operations gich as local node movements
are applied (Hameyer, 1999.

B. Multi-harmonic problems

Another application involves the wupling of different
solution fields of the same physical nature. More in
particular, in frequency domain methods using more than

one harmonic (Driesen, 1999, a set of coupled eddy-
current problems is to be solved. Since exch frequency
has a different skin depth, the meshes do not have to be
identical. To achieve a sufficient accuracy of the solution
and the post-processng (e.g. when the total current
density is to be known to comptute the joule loss density),
the mesh has to be refined adaptively by the method
described abowe. In this way it is possble to oltain
meshes that are sufficiently fine to compute the airrent
distributions in solid conductors for all different
frequencies.

3. Conclusion

In this paper, a generally applicable technique which
allows to maintain a high degreeof ‘mesh compatibility’,
required for accurate wupled problem FEM solutions on
independendent adaptively refined meshes is presented.
The etimated error is transferred to the different
subproblem meshes by means of projedion techniques.
As a consequence, the different errors are mwmbined by
using a mathematical averaging operation. The
methodology is illustrated on a eledromagnetic-thermal
coupled problem.
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