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Abstract — This paper discusses methods to produce 
adaptively refined finite element meshes, to be used in 
coupled field problems.  Err or estimation information from 
one subproblem mesh is transferred using a projection 
methods to the other meshes and combined, by means of 
different types of mathematical averaging, with the other 
error vectors before refinement is performed.  In this way, 
mesh compatibili ty is assured to maintain the required 
accuracy in the coupled problem.  This approach is 
appli cable to multi-physics problems such as coupled 
electromagnetic-thermal problems involving eddy current 
losses and multi-harmonic problems of the same physical 
nature. 
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1. Introduction 

Coupled problems simulated using the finite element 
method (FEM), are best solved on individual meshes 
(Eustache, 1996), since the physical realit y of the 
subproblem imposes different boundary conditions and 
accuracy requirements and since the subproblem domains 
often only have a part of the model in common.  These 
meshes are usually constructed in advance.  Occasionally, 
they are adaptively refined on an individual basis, but 
thereby neglecting the associated coupled problem.  It can 
be necessary to locall y apply different types of finite 
elements in the individual subproblem. 

The use of entirely identical meshes is therefore not a 
good idea.  Identical meshes mean wasting elements and 
therefore an increase of the computational efforts.  For 
example, if one subproblem has a rather smooth solution 
and the sensiti vities of the other subproblems with respect 
to the solution in this region are relatively low, the use of 
a fine mesh for this subproblem is not necessary.  
Sometimes a mesh is constructed locall y too fine for 
numerical reasons e.g. to obtain high qualit y elements in 
the transition between coarsely and fine meshed regions 
for one subproblem.  If these requirements are not relevant 
for other subproblems, then this mesh does not have to be 
as fine as the other.  It is possible that strategies to 
enhance the geometric mesh qualit y yield slightly different 
local meshes. 

Assuming no singularities are present in the vicinity of 
the element, the order of the error for the FEM model can 
be expressed as a proportionalit y in terms of a relevant 
characteristic element size h and the polynomial order of 
the element p by (Zienkiewicz, 1994): 

 ( )1~ +phOe  (1) 

Overlapping mesh parts with significantly different 
element size should be avoided or the element 
approximation must be of an appropriate polynomial 

order.  In fact, the overall accuracy of the coupled solution 
is determined by the lowest accuracy of the individual 
subproblems considered.  When the polynomial order of 
the elements is locall y the same, the sizes may not differ 
significantly.  This property, which can be called ‘mesh 
compatibilit y’ , has to be kept, even after mesh refinement.  
To prevent the generation of incompatibiliti es, error 
information has to be transferred from one mesh onto the 
other during the adaptive mesh generation process. 

2. Err or information transfer 

A. Method principle 

When a subproblem-specific error estimator indicates 
that it is required to refine the mesh in a particular 
location, this information needs to be transferred to the 
mesh of the other subproblem and combined with the 
locall y estimated error.  This must be performed in such a 
way, that the local normalised error will i ncrease when 
refinement is strictly required in the other associated 
subproblem.  Mathematically, this error can be interpreted 
as a field quantity expressed per element.  For the total 
mesh of subproblem i, the vector of local element errors 
{ ei} is obtained and is normalised. 

Fig. 1 ill ustrates a methodology (for two coupled 
subproblems) to maintain a higher degree of mesh 
compatibilit y.  The error information vectors of the 
individual problems are projected to the other subproblem 
mesh.  Hence, an approximate local error estimation for 
all the involved subproblems is available in every submesh 
element to be combined to form a global estimate. 
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Fig. 1.  Methodology to maintain mesh compatibilit y 
 in coupled field error estimation. 



B. Error combination 

The ‘combination’ of the error vectors is obtained by 
averaging the normalised errors.  This averaging, yielding 
a new set of normalised vectors, may be (for n subfields): 
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2) quadratic: 
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3) geometric: 
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In the weighted averages, the weight wii can be fixed to 
be dominant.  The quadratic mean stresses extreme 
values: if the error is significant in one subfield, this is 
retained in all fields.  This expression can guarantee a 
high degree of ‘mesh compatibilit y’ .  To a lower extent, 
the algebraic mean has the same property.  The geometric 
mean smoothes the element errors: the element only gets a 
large error estimate when it has significant errors in all 
subfields.  A high combined value may therefore indicate 
a locall y strong mutual dependence if appropriate error 
estimators for the individual problems were selected. 

C. Projection implementation 

The projection operation for the error quantities, 
interpreted as a piece-wise continuous low-order field in 
case of zero-order estimates can be implemented in two 
ways: 

1) Interpolation:  An average over the destination 
element’s area is calculated using numerical integration 

by means of appropriate Gauss points (this technique can 
be used to transfer losses and other low-order fields 
(Driesen, 1998). 
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2) Least-squares or weighted residual method:  An 
alternative way to transfer the error information from one 
mesh, associated to subproblem i1, onto another mesh, 
associated with subproblem i2, is a least-squares fit.  The 
quadratic difference error field, written as a weighted sum 

of shape functions 1i
kN  and 2i

kN , is minimised for every 

unknown error term kie
2
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This yields: 

 ( ) ( ) 0
1

1

1

2

2

22

11

=Ω



















−∫ ∑∑

Ω ==
e

ii

deNeNN
n

k
ki

i
k

n

k
ki

i
k

i
k  (10) 

Eq. (10) can be interpreted as a weighted residual.  The 
sparse system to be solved contains building blocks simil ar 
to those found in FEM systems. 
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The integrals in the right-hand side expression are to 
be evaluated numericall y as they contain partiall y 
overlapping shape functions (Fig. 2).  In the case of zero 
order errors, the interpolation and least-squares 
approaches become identical.  For higher order estimates, 
the sparse equation system has to be solved. 
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Fig. 2.  Related mesh elements in a projection operation; some 
Gauss points for numerical integration are indicated. 



3 Applications 

A. Electromagnetic-thermal problems 

The presented adaptive mesh refinement technique is 
used in coupled electromagnetic-thermal problems.  In 
this type of problems, different meshes have to be used 
because of the different physical properties of the coupled 
problem’s subdomains.  For instance, the air region is 
entirely discretised for the magnetic field as it carries the 
leakage flux.  In general, this part is replaced by 
convective boundary conditions for the thermal problem 
definition. 

The joint problem is often solved first on a set of 
meshes generated by an initial solution of the problems in 
an uncoupled way.  This leads to a (simple) initial mesh 
with a suff icient qualit y to start up the coupled problem.  
In a next step, the problem is solved in a coupled way, 
with h-adaptive refinements.  This coupled problem 
solution can be obtained by means of substitution or 
(quasi-)Newton algorithms (Eustache, 1996), (Driesen, 
2000), (Molfino, 1989). 

 
The example discussed here is a conductive heating 

problem.  A square shaped tube constructed out of 
electricall y conducting material heats a fluid flowing 
internall y through the cooling channel.  The surrounding 
air is included in the magnetic domain (Fig. 3a).  In the 
thermal domain, convective boundary conditions are 
present internall y and externally (Fig. 3b).  Due to skin 
effect, the current and loss density is distributed over the 
cross-section.  First order triangular elements are used for 
the field solution.  The non-linear material characteristics 
and loss densities are assumed to be uniform within a 
finite element (zero order approximation). 

fluid

conductor

thermal
boundary

fluid

conductor

magnetic boundary

air

 

(a) magnetic domain (b) thermal domain 

Fig. 3.  Coupled problem domains. 
 
The error estimator used for the thermal problem is 

based on the difference of the thermal gradient or the heat 

flux through an element as an indication for possible 
temperature differences.  An adaptive refinement of the 
thermal problem by itself would achieve a mesh that is 
mostly refined in the vicinity of the cooling channel. 

The magnetic field error estimator is chosen to yield an 
accurate loss density distribution.  Therefore, the 
difference between the current densities is used for the 
error estimation.  As skin effect is considered, a fine mesh 
in the conductor part close to the surface is obtained, 
which is significantly different from the mesh defining the 
thermal field problem. 

This is ill ustrated in Figures 4 and 5.  In the refinement 
strategies used, the projection is implemented as 
interpolation. 

 
When the thermal error estimation is dominant (e.g. a 

large weighting coeff icient in (3)) the meshes of Fig. 4 are 
obtained.  The magnetic field is refined close to the 
channel due to the thermal error transfer.  The skin region 
is only refined in the corners, where the (non-dominant) 
magnetic error estimates are large in magnitude. 

 

 

(a) magnetic field mesh (b) thermal field mesh 

Fig. 4.  Meshes obtained using adaptive refinement with a large 
weight for the thermal field error estimation. 

 
On the other hand, when the magnetic error estimation 

dominates, the skin regions will contain most of the 
elements in compatible thermal and magnetic meshes 
(Fig. 4). 



 

 

(a) magnetic field mesh (b) thermal field mesh 

Fig. 5.  Meshes obtained using adaptive refinement with a large 
weight for the magnetic field error estimation. 

 
To obtain an accurate coupled solution, it is important 

that the mesh in the conductive region stays compatible 
and be refined both, close to the skin and in the vicinity of 
the cooling channel.  The result of the combined error 
estimation is shown in Fig. 6.  To obtain these meshes, the 
quadratic averaging (4) is used, with equal weights for 
both subproblem error estimations. 

 

 

(a) magnetic field mesh (b) thermal field mesh 

Fig. 6.  Meshes obtained using adaptive refinement with an 
equal weight for the magnetic and thermal field error estimation. 

 
To obtain these meshes, four refinement steps were 

employed.  In each step, the number of elements is 
approximately doubled by refining the elements with the 
largest scaled combined error.  After the refinement, extra 
mesh enhancing operations such as local node movements 
are applied (Hameyer, 1999). 

B. Multi-harmonic problems 

Another application involves the coupling of different 
solution fields of the same physical nature.  More in 
particular, in frequency domain methods using more than 

one harmonic (Driesen, 1999), a set of coupled eddy-
current problems is to be solved.  Since each frequency 
has a different skin depth, the meshes do not have to be 
identical.  To achieve a suff icient accuracy of the solution 
and the post-processing (e.g. when the total current 
density is to be known to compute the joule loss density), 
the mesh has to be refined adaptively by the method 
described above.  In this way it is possible to obtain 
meshes that are suff iciently fine to compute the current 
distributions in solid conductors for all different 
frequencies. 

3. Conclusion 

In this paper, a generall y applicable technique which 
allows to maintain a high degree of ‘mesh compatibilit y’ , 
required for accurate coupled problem FEM solutions on 
independendent adaptively refined meshes is presented.  
The estimated error is transferred to the different 
subproblem meshes by means of projection techniques.  
As a consequence, the different errors are combined by 
using a mathematical averaging operation.  The 
methodology is ill ustrated on a electromagnetic-thermal 
coupled problem. 
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