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Abstract. An interesting method based on a variable splitting into two time-scdes, the 'transient time
harmonic method is proposed allowing to compute transient phasor solutions of problems involving slow,
close to quasi-static and fast dynamics smultaneoudly, yielding tiff properties. The time-step of the
dynamic problem can be chosen larger than the fundamental time interval, resulting in an ‘envelope’ model
for the problem with the small time cnstant. The derivation of the FEM matrices is discussed. Examples,
including a transformer operating a slow varying load and a transient coupled eledromagnetic-thermal

problem, are discussed.

Résumé. Une méthode intéressante, appelée 'méthode transitoire-harmonique’ est proposée  Elle permet
le cdcul de problémes contenant a la fois des phénomeénes rapides et lents, voire quasi-statiques, conduisant
ades propriétésrigides. Le pas de temps du probléme dynamique est supérieur a la période fondamentale,
cequi conduit a un'modéle eveloppe' du probléme ayant la plus faible mnstante de temps. La dérivation
des matrices FEM est discutée Des exemples, comprenant un transformateur fournissant une darge
lentement variable g un probléme dedromagnétique wuplé au champ thermique, sont discutés.

PACS. 4120.Gz Magnetostatics; magnetic shielding, magnetic induction, boundary-value problem -

02.70.Dh Finite-element and Galerkin Methods - 84.30.Jc Power eledronics; power supply circuits

1 Introdu ction

Traditionally, eledromagnetic devices operating on a definite
fundamental frequency are simulated by either a transient
computation or a frequency domain method, such as the time-
harmonic or harmonic balance method. The doice between
the methods is made, based on the fad whether a non-
repetitive phenomenon or the steady-state is sudied. The
transient time-step size is related to the time @nstant of the
dynamic phenomenon. The time- or multi-harmonic
approaches implicitly asaume periodic solutions, written in
terms of a singe sinusoid or a set of superposed harmonic
functions.

However, problems may arise when simulating models
with combined fast and slow dynamics. Such an exampleisa
coupled thermal-magnetic problem, with time nstants
related to the period d the fundamental eledricd supply
frequency (< 1 sec) and thermal time @nstants (> 1 hour).
These types of problems have amathematicd <tiff nature and
therefore require spedal integration techniques [1].

An dternative interesting method, the transient time-
harmonic gpproad, is propased here to tadle this type of
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problems. This approad, adualy forming a bridge between
the pure transient method and the steady-state asuming
methods, is presented in this paper.

2 Method Derivation

2.1 Steady state frequency domain methods

The well-known 2D equation describing the transient
magnetic field evolution in terms of the magnetic vedor
potential, is[2]:

ntfun(A)-o(T) 22 = -o(r &)

ot

with: A magnetic vector potential
v magnetic reluctivity tensor, possibly dependent
on the magnetic field for ferromagnetic
materials
o electrica conductivity
T temperature
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V  source voltage
The applicable boundary conditions are Dirichlet (parallel
field lines) and Neumann (perpendicular field lines). The
initial conditions depend on the problem, for instance a zero
field or a steady state field calculated separately. The
position dependence of the field variables is not indicated
explicitly, but is assumed implicitly.

This equation is transformed into a real-valued matrix
equation, using the Finite Element Method (FEM). The
transent field solution is calculated as a sequence of
consecutive partial solutions, one time-step At apart. To
obtain a stable method, At needs at least to be smaller than
half of the fundamental period (due to aiasing effects).
Additionally, problem specific stability limits have to be
considered. These boundaries are determined by the fastest
phenomenon in the field, requiring the shortest time-step.

Equation (1) is transformed to the time-harmonic
equation [1] by applying a Fourier transformation (which also
yields the Harmonic Balance methods [3]) or by simply
substituting:

Alt)= Are'™ @)

Hence, the assumed steady-state solution is entirely
described by the complex phasor A. The time dependency is
completely described by the exponential term, the only
dynamic phenomenon left in steady-state at the fundamental
frequency.

2.2 Transient time-harmonic method

However, if the complex phasor solution is allowed to change
in time, but evolving with a slower dynamic behaviour than
the fundamental frequency phenomenon, an alternative
method is obtained. In fact, two time scales are separated by
this type of variable splitting [1], thereby avoiding problems
dueto stiffness. Eq. (2) isreplaced by:

Al)= At) D, 3)

h— quasi —
%rggrﬁ harmonic

involving the time dependent complex phasor solution A(t).
This phasor can be interpreted as an ‘envelope’ around the
solution (e.g. in Fig. 1 for an exponential decy).

IA®)

Fig. 1. Graphicd interpretation of the time dependent phasor
‘envelope’ solution.

This methoddogy is siggested in circuit analysis as well
to study eledronic drcuits with modulated signals [4], but as
far as known to the aithors, it has not appeaed in
(eledromagretic) field analysis.

The time derivative of (3) becomes:

R _Hiwa+ 22 Hpie ()
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Subsgtitution of (3) and (4) in (1) yields the ‘transient
time-harmonic’ partial differential equation, after eliminating
the exponential term, thereby removing the fast dynamics
from the equation:

oo(a)-ofroarTleoth

In many systems such as eledricd energy distribution
applicaions, the pulsation w is known and constant.
However in, for instance freeoscill ating system it may be an
unkrnown, to be determined separately. Further on, it is
asaumed that wis known.

The boundary conditions, as well asthe initial conditions
asciated to the original field equation (1) are transformed
into conditions for (5) by substituting (3).

This equation is transformed into FEM equations using
the Galerkin method [1]. The time derivative isreplaced by a
single step finite difference with a At, relevant for the slow
phenomenon time scde:

Bl + e )+ BEDByG )

At T
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FEM matrix assciated with the diffusion term
FEM matrix asciated with the harmonic term
FEM matrix assciated with the transient term
FEM vedor associated with the sourceterm
time weight

with:
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2.3 Computational aspects

In principle, there is no adiasing-related baund on At, as it is
made independent of the fast phenomenon, which is
represented by the oscill atory function. It is determined by
the larger time @nstants of the slow dynamics in the problem.
Therefore, time-steps ganning multiple periods of the
underlying oscill ation pose no problem. The complete time
evolution can be remnstructed from these phasors by
multi plying with the exponential function asin (3).

An extension with circuit equations [5] is made by
substituting the two-term time derivative function (4) in the
appropriate induction terms.

Multi-harmonic dgorithms are possble a& well by
extending (3) to a summation of harmonic components.

It must be noted that theoreticdly any transient solution
can be obtained by this method, as siown in (7). In generd,
however, thisisa computationaly rather inefficient approad,
due to the complex variables, than using the transient method
diredly. This is true, unless a smocth transition to larger
time-steps (e.g. in adaptive methods) is required.

A)= (A)e e @

3 Applications

3.1 Slowly varying sources or loads

When loads or sources are varying relatively dowly (in
amplitude, phase ad/or frequency) compared to their
fundamental period, a transient analysis, using the proposed
transient time harmonic technique, yields an efficient solution
method that all ows to compute the solution'stime evolution at
the slow rate. A reguar transient method would require
multi ple time-steps per period.

As an example, a singe magnetic field solution,
simulating a ‘Power Quality’ problem, more in particular
‘flicker’ iscomputed. Thisisarapid voltage thange in which
the voltage anplitude changes at a modulating frequency of
>10Hz, which is experienced as very annoying in eledricd
lighting as perceved by the human eye. The caise is
generaly a permanently varying load o supply, causing a
congtantly changing woltage drop in the supply impedance
and transformer.

The example used here, is a single-phase transformer
(Fig. 2), conneded to a voltage supply at 50 Hz, operating a
variable resistive load. The load value, occurring in the
circuit equations, changes between 20 % and 100 % at a rate
of 11 Hz. Therefore, the stealy-state has a large period: the
smallest common multiple of the fundamental and the flicker
period. The primary supply voltage & 50Hz is connected
with a rather severe internal impedance e.g. a long cable

(Fig. 3).

Fig. 2. Single-phase transformer model.
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Fig. 3. Flicker simulation circuit.

Fig. 4 shows the evolution of the magnitude of the flux in
the leg of the ferromagnetic transformer core. A Fourier
analysis shows that this phenomenon contains a dominant
(fast) 50Hz component and a smaler (dow) flicker
subharmonic plus interharmonics. A time-step of 0.02 sec,
which is in fact one period of the mains frequency, is used.
The flux change is limited since part of the voltage drop
influences the leakage fluxes and because of the saturation
level.
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Fig. 4. Change of the magnitude of the magnetic induction in

atransformer leg, during voltage flicker.
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3.2 Slowly changing non-linearities, due to thermal
coupling

When the time evolution magnetic problem to be solved is
coupled to athermal field (eg. (5), extended with appropriate
convedion constraints), due to material parameter thermal
dependencies, an extremely large difference can be noticed
between the magnetic (range of seaonds) and the thermal time
constant (range of hours). Due to the high computational
costs, the standard transient field method, even in a speda
version for stiff problems, can obviously not be used.

0T)- o2 = ®

with: T  temperature

A therma conductivity
p  massdensity

¢  spedfic hed

g hed sourcedensity

Often the problem is asaumed to reside in some
‘temporarily steady-state' for the magnetic problem. This is
equivalent to negleding the time derivative in (5) and the
resulting time-harmonic eguation is coupled to a transient
thermal field [4]. For many applications this approach leads
to a solution, but, as is experienced by the aithors,
unfortunately sometimes the used non-linea iteration
becomes unstable due to this assumption uniessunressonably
small time-steps are used. This phenomenon is encountered
in the described magnetic/thermal problem when significant
skin effed variations occur due to the locd heding effeds.
In this case the transient time-harmonic method, which is
theoreticdly more acarrate, has to be gplied and yields the
coupled problem solution using reasonabl e time-steps.

Fig. 5 shows the solutions of a aupled example problem:
a solid metalli c conductor, with alarge asped ratio and a skin
depth being smaller than the length, is driven by a voltage
source ad cooled by natural convedion, imposing an
asymmetricd convedion due the heding rising air. In this
case the dedricd conductivity is hyperbdlicdly temperature
dependent with a parameter a:

_ O et
a(r)= Tralr—T.) ®)

The arrent density is the highest at the top and the
battom of the wmnductor; due to locd heaing (final hot spot
temperature = 60°C), the skin depth becmmes larger and the
current and lossdensity profile dhanges. When this transient
problem is lved by means of block iteration involving the
stealy-state time-harmonic and transient thermal field,
divergence is encountered even when extremely small time-
steps are used (due to truncaion errors). The use of the

transient-time harmonic method (6) yields sable converging
iteration (Fig. 6).

(a) Magnetic
field solution

(b) Temperature

field solution
Fig. 5. Final magnetic and thermal field solution obtained for
the transient coupled problem solution of a large aped ratio
solid conductor.
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Fig. 6. Diverging (non-linea algorithm with approximating
time-harmonic  gproach) and converging (non-linea
algorithm with more @rred transient time-harmonic

approad).
Conclusions

An approadh, the transient time harmonic method, is
presented to simulate magnetic problems with combined fast
and dow dynamics. This type of problems sows giffness
properties and would require mplicated red-valued
integration methods involving small time-steps. Here, a
variable splitting yielding a separation of the fast and slow
field changes is applied. The solution is cdculated as the
time evolution of a complex phasor. The resulting complex
transient method can be avanced using large time-steps
(larger than a singe oscill ation period), at the pace of the
slow phenomenon.

Two examples illustrate the alvantages of this
methoddogy. At first, a single phase transformer supplying a
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variable (‘flickering at 11 Hz) load is sSmulated. The voltage
drop in the supply system causes a change of the magnetic
flux magnitude & the rate of the load oscill ation.

Sewmndly, a wmupled transient thermal-magnetic
simulation is made. Due to the large difference in time
constants, a very stiff problem is obtained. It is preferable to
obtain the (thermal) solution wsing large time-steps.  Often,
the magnetic subproblem solution within these intervals is
approximated using a steady-state method, but this may lead
to dvergence as gown. The use of the transient time-
harmonic method is theoreticdly more acarate and yields
better converging coupled solutions.
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