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Résumé - La présence de matériaux dont les perméabilités 
sont très différents a une influence néfaste sur la convergence 
des solveurs itératifs de Krylov. Le préconditionnement ne peut 
pas améliorer la convergence de certains éléments, dont les 
vecteurs propres correspondent aux domaines où les matériaux 
présentent une faible perméabilité. Des approximations pour ces 
vecteurs propres sont réalisées sur base des caractéristiques 
physiques du problème. La procédure itérative de résolution est 
séparée en un problème réduit pour les modes propres de faible 
convergence, et un modèle complet dont ces mêmes modes sont 
retirés. Cette méthode converge plus rapidement que les 
approches conventionnelles. 

 
Abstract - The presence of materials with a large relative 

difference in permeability has a harmful influence on the 
convergence of Krylov subspace iterative solvers. Some slow 
converging components are not cured by preconditioning and 
correspond to eigenvectors reflecting the domains with 
relatively low permeable material. Approximations for those 
eigenvectors are determined using physical knowledge of the 
problem. The iterative solution process is split up in a small 
problem counting for the separated eigenmodes and a full-size 
problem out of which the slow converging modes are removed. 
This deflated preconditioned solver is faster converging 
compared to more common approaches. 

I. CONVERGENCE OF ICCG 

Krylov subspace iterative methods solving linear systems 
of equations require only matrix-vector multiplications and 
vector updates, making them especially attractive to solve the 
sparse systems arising from finite element discretisations [1]. 
The magnetostatic Poisson equation in terms of the magnetic 
vector potential, discretised by finite elements, yields a 
sparse positive definite symmetric system of equations, 

, to which the Conjugate Gradient (CG) method is 
applicable. 
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The convergence of CG applied to (1) is bound by 
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The condition number K is the ratio between the largest and 
the smallest eigenvalue [1]. k is the iteration number. The 
convergence of CG applied to the model problem of Fig. 1 is 
plotted in Fig. 2. Better convergence is achieved by applying 
the Krylov subspace method to the system 

bMAxM 11 −− =  (2) 

with M an appropriate preconditioner. A good preconditioner 
projects the spectrum of A to a spectrum for  with all 
eigenvalues in a small band around 1, diminishing K and thus 
increasing the convergence rate. 

AM 1−

As a preconditioner, an Incomplete Cholesky (IC) 
factorisation is commonly used [2]. The spectra of A and 

 are plotted in Fig. 3. Preconditioning improves the 
convergence substantially (Fig. 2, Table I). The two smallest, 
but important, eigenvalues left after preconditioning, 

AM 1−

1λ  and 

2λ , are related to the presence of two relatively low 
permeable air parts inside the model. The iterative solver 
only reaches the solution when both eigenmodes are 

NUMBE

number of 
unknowns 

CG 

117 111 
424 239 

 

Fig. 1: Magnetic flux plot of an inductor. 
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Fig. 2: Convergences of CG, ICCG, exact deflated ICCG (DICCG) and 
approximative deflated ICCG (D*ICCG). 
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R OF ITERATIONS 

 
ICCG D*ICCG DICCG 

23 14 12 
37 31 21 
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as long as the solution x is restricted properly to  [4]. The 
deflated version of the ICCG solver (DICCG) provides an 
extra gain of convergence to which the extra work introduced 
by P in the algorithm is negligible (Fig. 2, Table I). 
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Fig. 5: Basis for the approximative eigenspace corresponding to the small 
eigenvalues of M-1A. 
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Fig. 3: Spectra of A (above), M-1A (middle) and M-1PTA (under).
orated. The two stagnation points in the convergence 
y (Fig. 2) reveal that these eigenmodes are difficult to 

II. DEFLATED ICCG 

e eigenvectors associated with  and 1λ 2λ  (Fig. 4), 
a partial eigenspace . Consider the 

tor 
[ v ]21vV =

( )T1 AVVEI −−  (3) 

. P is a projector ( ) and commutates 
 as P  [3]. The solution x is split up in 

( ) VAVE T=

A =T

PP =2

AP

( ) PxxPI +− . (4) 

)x  is the component of the solution contained in the low 
sional space spanned by V. As a consequence, its 

utation is inexpensive. 

bVVExP T1) −= . (5) 

s perpendicular to V in the M-1A-inner product. This 
d component is solved from 

bPMAxP T1T1 −= . (6) 

ing CG to (6) is more efficient compared to (2) because 
pectrum of  does not contain APM T1−

1λ  and 2λ  

3).  has two zero eigenvalues indicating the 
eficiency of the projected system. CG is still applicable 

APM T1−

III. APPROXIMATIVE EIGENVECTORS 

The exact determination of the considered eigenvectors 
would cost more work than the solution of (2). Fig. 4 
indicates that approximations for these vectors are easily 
obtained on a heuristic basis. Approximative eigenvectors are 
constructed assuming the magnetic flux to be homogeneously 
distributed in the flux tubes formed by the high permeable 
iron parts and the air gaps of the model (Fig. 5). The 
performance of the deflated method depends on the accuracy 
of the determination of the eigenvectors corresponding to the 
crucial eigenmodes. The numerical tests (D*ICCG in Fig. 2, 
Table I), however, show that this very easy approximation is 
sufficient to obtain a significant improvement. In practice, 
this kind of modellisation is always carried out before 
proceeding to a finite element model. The improved version 
of ICCG, presented here, recycles that information. 

IV. CONCLUSIONS 

The bad convergence properties of the incomplete 
Cholesky preconditioned Conjugate Gradient iterative 
method applied to a magnetostatic finite element model with 
large variations in reluctivities is overcome by supplying 
heuristic approximations for some important eigenvectors of 
the model to a deflated version of the solver. 
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Fig. 4: Eigenvectors  of M-1A corresponding to  and . 1λ 2λ
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