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Abstract - In order to numerically predict the stator vibration spectrum, the mechanical behaviour of the 
stator (mode shape) is correlated with the force distribution occurring inside the machine. This force 
distribution is found considering the coupling between the magnetic and the mechanical finite element 
systems. This coupling results in a finite element expression containing both the Lorentz forces and the 
Maxwell forces. Using a weak coupling approach, magnetostriction forces are added to the force 
distribution. The numerically predicted stator vibration spectrum of a synchronous machine is compared to 
stator surface measurements. 
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I. INTRODUCTION 
 
 The main source of acoustic noise of electric machines are the radial stator vibrations. Although this 
deformation is mainly caused by radial reluctance forces on the stator teeth (Maxwell magnetic stress), 
magnetostriction effects can contribute significantly [LAFT]. In order to be able to compute stator 
deformation, local force expressions are needed. Here, a nodal force expression is derived based upon the 
coupled magneto-mechanical finite element model, which covers both Lorentz force and Maxwell stress. 
The magnetostriction effect is represented by a set of nodal forces giving rise to the same deformation as 
the magnetostriction would. This total force distribution is calculated using the magnetic field solutions for 
all relevant rotor positions. For a constant rotor speed, the forces are obtained as a function of time and the 
spectrum of the force distribution is computed. 
 Using a 2D mechanical finite element (FE) model of the stator, the undamped stator mode shapes are 
computed taking both iron yoke and copper coils into account. When damping is neglected, the total 
equation of motion of the stator decomposes into the individual modal equations of motion (modal 
decomposition). The generalized force (mode participation factor) acting upon a particular stator mode is 
found as the correlation between the force distribution and the mode shape. These modal equations of 
motion are then solved in the frequency domain giving the individual modal spectra. The total vibration 
spectrum at a specific location on the stator is found by applying the inverse modal decomposition to the 
modal spectra. The numerically predicted spectra are compared with accelerometer measurements of the 
stator vibration spectrum on different points of the stator of a synchronous machine in generator mode. 
 
II. THE COUPLED MAGNETO-MECHANICAL SYSTEM 
 
 Both magnetostatic and elasticity FE methods are based upon the minimisation of an energy function. 
The total energy E of the electromechanical system consists of the elastic energy U stored in a body with 
deformation a [ZIEN] and the magnetic energy W stored in a linear magnetic system with vector 
potential A [SILV]: 
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where K is the mechanical stiffness matrix and M is the magnetic ‘stiffness’ matrix. Considering the similar 
form of these energy terms, the following system of equations represents the numerically coupled magneto-
mechanical system: 
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where T is the magnetical source term vector and R represents external forces other than those of 
electromagnetic origin. Setting the partial derivatives of total energy E with respect to the unknowns [A  a]T 
to zero, the combined system (2) with T=0, R=0 is retrieved: 
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The coupling term D can be used to represent magnetostrictive effects in an analysis using strong coupling 
but will not be considered here, so that D=0 and T=MA. Rearranging the mechanical equation (4) into 
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reveals a means to calculate the forces Fem internal to the magneto-mechanical system. These magnetic 
forces are computed from vector potential A and the partial derivative of the magnetic stiffness matrix M 
with respect to deformation a. These forces Fem are also found by applying the virtual work principle to the 
magnetic energy W for a virtual displacement a [COUL][REN]: 
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where vector potential A has to remain unchanged (constant flux) [ODEN]. For the non-linear case, the 
matrix M is a function of magnetic field and displacement: M(A,a). The magnetic energy W is now given 
by the integral 
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where T=MA and MT=M was used. The force expression (6) now becomes 
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Note that adding a constant to A indeed does not change the value of the integral. The partial derivative 
∂M/∂a is derived explicitly using the analytical shape functions and the magnetization characteristic of the 
material, e.g. ν(B2), as explained in detail in [DELAmagdeburg]. 
 
III. MAXWELL AND LORENTZ FORCES 
 
 The expression (8) for the force Fem was derived in a general fashion, not focussing on permeability 
interfaces or regions with current. Any permeability interfaces will contribute greatly to the ∂M/∂a 
summation over a node that lies on the interface and will yield the same value as the Maxwell stress. 
Elements with current density will affect the vector potential profile in such a way that, when (8) is used, 
exactly the Lorentz force acting on that element is revealed. The power of expression (8) is that both forces 
are found in one single procedure. 
 Fig.1 shows a conductor with current I in a uniform external magnetic field Be , but shielded by a ring of 
magnetic material. The Lorentz force per meter on the conductor without shielding is Ftot=IxBe. With 
shielding the Lorentz force is Fs=IxBs where Bs is the (much smaller) homogeneous field at the conductor 
after shielding. Figure 2 shows the magnetic field using a very large flux line density so that the small field 
at the conductor becomes visible. The field shown in Fig.2 is the sum of the homogeneous field Bs and the 
field of the conductor current itself. Fig.3 shows the results of the force expression (8). Fig.4 shows a detail 
of Fig.3 around the conductor. The sum of all the nodal forces on the conductor gives exactly Fs=IxBs. The 



 

 

sum of the nodal forces on the shielding ring gives FM=Ftot-Fs=IxBe–IxBs so that the total force on the ring-
conductor system again gives Ftot. 
 Fig.6 shows the force distribution obtained for one pole of a six-pole synchronous machine in generator 
mode for the magnetic field shown in Fig.5 for two rotor positions. The forces on the stator are mostly due 
to the Maxwell part of (8). 
 
IV. MAGNETOSTRICTION FORCES 
 
There are several so-called magneto-mechanical effects, i.e. effects where the mechanical deformation or 
stress changes the magnetization µ0M in the material: 
• The most important effect is the well-known magnetostriction effect λ(B) pertaining to the strain λ of a 
piece of magnetized material. 
• The inverse magnetostriction effect is the dependency of the magnetization µ0M on the tensile or 
compressive stress σ. Since stress influences magnetization, it will also influence the magnetostriction itself 
and turn the λ(B) characteristic into a λ(B,σ) dependency. 
• A smaller effect is the ∆E effect: change of effective Young's modulus due to magnetization. 
• Normally there is no relevant volume change due to magnetostriction [JILES], but under some 
conditions and for some materials there is. This effect is referred to as volume magnetostriction. 
The last two effects will not be considered here since they are only of secondary importance for the usual 
engineering applications [HIRSINGER]. Fig.7 shows magnetostriction characteristics for non-oriented 
3% SiFe as a function of flux density and stress. Fig.8 shows magnetostriction characteristics of M330-50A 
which has different behaviour parallel and perpendicular to the rolling direction (anisotropic material). 
 
When the λ(B) characteristic is known, the strain λe and the displacement ae

ms of every finite element can 
be found using the magnetic field solution. This displacement ae

ms is then represented by a set of 
mechanical forces Fms (here referred to as magnetostriction forces) using the element's mechanical stiffness 
matrix: Fms=K ams. There will usually be forces parallel and perpendicular to the flux density vector (even 
for isotropic material) since the mechanical Poisson modulus is about 0.3 while magnetostriction keeps the 
volume constant (Poisson modulus of 0.5). Fig.9 shows the magnetostriction forces for the magnetic field 
of Fig.5. Fig.9a shows the forces obtained using the isotropic non-oriented 3% SiFe and Fig.9b shows the 
forces for the anisotropic M330-50A. Fig.10 makes a comparison between Maxwell stresses and 
magnetostriction forces for this machine. It can be seen that both force components will contribute about 
equally to the stator deformation. 
 
V. STATOR MODE SHAPES AND MODE PARTICIPATION FACTORS 
 
Using the 2D mechanical stiffness matrix K and mass matrix Mm of the stator, the undamped 2D stator 
mode shapes are found, some of which are shown in Fig.11. The modes are calculated taking mass and 
stiffness of the yoke iron and the stator coil copper into account. For a given force pattern f α, occurring for 
rotor position α, and a given mode shape φi , the mode participation factor Γi

α is defined as [THOM]: 
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The jth element of the vector φi is the displacement of the ith mode shape at the jth node, while the jth element 
of the vector f α is  the force on the jth node due to the magnetic field for rotor position α. Fig.12 shows the 
mode participation factors (MPF) of several modes for rotor positions from 0° to 360°. The MPF usually 
contain both a DC- and an AC-component. 
 
VI. STATOR VIBRATION SPECTRUM 
 
The vibration of the stator is governed by 
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where u(t) is the nodal displacement and f(t) is the force distribution acting on the stator, f(t)= f α for 
α=2πnt/60. Mm, Cm and K are the mechanical mass, damping and stiffness matrices respectively. Using the 
modal decomposition 
 Pqu = , (14) 

with P the modal matrix containing a selected set of N stator mode shapes and q the vector of generalised 
modal co-ordinates, (13) is transformed into 
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where all terms were premultiplied by PT. Only when the mechanical damping Cm is assumed to be 
proportional (Cm=αK+βMm), the system of equations (13) can be decoupled into [MEIR] 

 )(2 2 tqqq iiiiiii Γ=ω+ωζ+ &&& , i = 1..N, (16) 

where ωi is the mode's circular eigenfrequency and ζ i is the modal damping factor. Here damping is 
neglected (ζi=0). Note that the modal decomposition indeed transforms the force f(t) into the MPF Γi(t), 
i = 1..80, as prescribed by (9). From (9), the MPF are known as a function of rotor position, the rotor speed 
n allows us to find the MPF as a function of time. The individual modal equations (16) are solved in the 
frequency domain after applying a discrete Fourier transformation to qi(t) and Γi(t): 
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The individual complex spectra Qi of the relevant modes are composed again into the actual stator 
displacement spectra U using the modal composition (14). Fig.13 compares the measured stator 
acceleration to the spectrum predicted using the 2D magnetic and mechanical finite element models. The 
correspondece is encouraging. 
 
VII. CONCLUSION 
 
Using 2D mechanical and magnetic finite element models, a relatively reliable numerical prediction of the 
vibration spectrum of the synchronous machine is obtained. The force distribution occurring for all relevant 
rotor positions is correlated to the 2D mode shapes of the induction machine stator, yielding mode 
participation factors as a function of time. A finite element expression for local electromagnetic forces is 
presented covering both Maxwell and Lorentz forces. Magnetostriction forces are introduced as those 
forces causing the same mechanical deformation as magnetostriction would. The global equation of motion 
of the stator is decomposed into modal equations of motion which are solved separately in the frequency 
domain. The spectral information of the modes is transformed back into spectral acceleration information 
for the stator surface. Considering the use to 2D models, relatively good agreement is obtained between 
predicted and measured vibration spectra. 
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