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INTRODUCTION 
 
The arbitrary geometry of an electromagnetic device is 

discretised using non-structured and non-nested grids (Fig. 1). 
For technical devices as electric motors with winding slots, 
cooling channels and small air gaps, the coarsest finite 
element discretisation already requires a considerable number 
of elements. An exact solution of the corresponding finite 
element stiffness matrix will be very expensive. In this paper, 
a magnetic equivalent circuit is proposed as a small-sized and 
effective coarse representation of the magnetic field problem 
within a multilevel approach. 

 
 

FINITE ELEMENT MODEL 
 
The governing equation for magnetostatics is 
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zA  and zJ  are the z-components of the magnetic vector 
potential and the current density respectively. ν  is the 
reluctivity of the ferromagnetic material. A finite element 
(FE) model is obtained by discretising (1) with linear 
triangular finite elements [1]. 
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Fig. 1: Geometry, coarsest mesh and refined mesh of a four-pole, three-phase 
induction motor. 
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Fig. 2: FEM/MEC two-level approach applied to a benchmark inductor. 
 
 

MAGNETIC EQUIVALENT CIRCUIT 
 
The magnetic equivalent circuit (MEC) of a benchmark 

inductor model (Fig. 2) is built by distinguishing magnetic 
conductors, magnetic insulators and magnetomotive sources 
in the geometry. The reluctances of the magnetic paths are 
computed using the flux tube method [2]. An unknown loop 
flux is assigned to each independent loop in the circuit. To 
solve the circuit, Kirchhoff’s voltage law and Hopkinson’s 
law are expressed in terms of the unknown loop fluxes and 
the known magnetomotive sources. 

 
 

FEM/MEC TWO-LEVEL METHOD 
 
Both modelling techniques fit within a two-level hierarchy 

(Fig. 2). The magnetic vector potential distributions 
corresponding to the unknown loop fluxes, form the 
prolongation from the MEC to the FE model (Fig. 3). The 
restriction is defined as the adjoint of the prolongation [3]. As 
smoothers, damped Jacobi and Gauss-Seidel are applied. The 
MEC represents the jumps in the material properties and the 
far-field influences of the field. On the coarse level, an exact 
solution is performed. 



 

APPLICATION 
 
The two-level FEM/MEC method is applied to the 

benchmark model (Mod1) and the induction motor (Mod2) 
(Fig. 4). The sizes of the FE models and the corresponding 
MECs and the number of iteration steps of the novel approach 
compared to other stationary iterative solvers are collected in 
Table I. It can be noticed that the two-level FEM/MEC 
approach performs better compared to the pure relaxation 
schemes but is for this elliptic problem not competitive to an 
Algebraic Multigrid (AMG) technique [4]. The two-level 
method is also applied as a preconditioner for the Conjugate 
Gradient (CG) method. 
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Fig. 3: Prolongations of Feφ  and leakφ . 

 
 

Fig. 4: Flux line plot of the induction motor. 
 
 

Table I: Number of iteration steps: two-level FEM/MEC method compared 
to Jacobi (JAC), Symmetric Gauss-Seidel (SGS) and AMG. 

 Mod 1 Mod 1 +CG Mod 2 + CG 
Size FE model 153 153 1951 
Size MEC 2 2 53 
JAC 768 27 2001 
SGS 386 23 825 
FEM/MEC + JAC 202 25 626 
FEM/MEC + SGS 128 19 587 
AMG   11 
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