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Abstract|An optimization of radial active magnetic
bearings is presented in the paper. The radial bearing
is numerically optimized using Di�erential Evolution { a
stochastic direct search algorithm. The nonlinear solu-
tion of the magnetic vector potential is determined using
the 2D �nite element method. The force is calculated by
Maxwell's stress tensor method. The parameters of the
optimized and non optimized bearing are compared. The
force, the current gain, and the position sti�ness are given
as functions of the control current and rotor displacement.

Introduction

The design of Active Magnetic Bearings (AMBs) [1] is ex-

pected to satisfy the static and dynamic requirements in

the best possible way. It can be found either by expe-

rience and trials or by applying numerical optimization

methods. AMBs are nonlinear systems. The dependency

of the objective function and its gradients from the de-

sign parameters is unknown. For the optimization of such

constrained, nonlinear electro{mechanical problems, the

use of stochastic search methods in combination with the

Finite Element (FE) analysis is recommendable [2].

In this paper the numerical optimization of radial

AMB using Di�erential Evolution (DE) [3] is presented.

It is the aim to achieve maximum force at a minimum

mass of the entire construction. The objective function

is evaluated by FE{based 2D calculations. The optimiza-

tion has been performed in a special environment tuned

for FE{based numerical optimizations [4]. The linearized

equations are applied to compare the performance of de-

signs prior and after the optimization.

Radial active magnetic bearing

The voltage balance in the coil of an electromagnet is

described by (1)

u = Ri+ L
di

dt
+ ku

dx

dt
(1)

where u is the voltage, i the current, R the Ohmic re-

sistance, L the inductance, ku the coeÆcient of induced

voltage, and dx

dt
the derivative of the rotor displacement

in the axis x. The resultant force of two electromagnets

located at the opposite sides of the rotor in the axis x (legs

3, 4 and legs 7, 8 in Fig. 2), linearized about operating

point x0, ip0, is given by (2).

F (x; ip) = F (x0; ip0) + ki(ip � ip0) + kx(x� x0) (2)

ki is the current gain, kx the position sti�ness, ip the

control current, and F (x0; ip0) the force in the operating

point x0, ip0. The same bias current ib is supplied into

the coils of both opposing electromagnets. Force control

is done by adding the control current ip into the coil of one

electromagnet and subtracting it in the coil of other one.

The motion of the mass point with the mass m between

two electromagnets is described by (3).

F = m
d
2
x

dt2
(3)

One axis of the radial AMB is mathematically described

by the pair of equations (1), by (2) and (3).

Optimization

The optimization of the radial magnetic bearing is briey

described in the following six steps:

� Step 1: The geometry of the bearing is described para-

metrically and the initial parameter values are determined

by a �rst analytical design (Fig. 2).

� Step 2: The new parameter values are determined by

DE [3]. The electromagnets in the y axis are supplied by

the current ib (legs 1, 2 and legs 5, 6 in Fig. 2), while the

electromagnets in the x axis are supplied by the currents

ib + ip (legs 7, 8) and ib � ip (legs 3, 4) at ip = ib.

� Step 3: The bearing geometry, the material, the cur-

rent densities, and the boundary conditions are de�ned.

The procedure continues with Step 2 if the parameters

of the bearing are outside the geometrical constraints.

� Step 4: First the mesh is generated. Then the

nonlinear solution of the magnetic vector potential is

determined using the conjugate gradient algorithm and

Newton-Raphson's algorithm.

� Step 5: The force is calculated by Maxwell's stress ten-

sor method. A contour along the center of the air gap is

used as integration path

� Step 6: The objective function and the penalties are

found empirically and described by (4). Their values are

determined from Step 3 through Step 5.

q =
mF0

Fm0

+ p1 + p2;
p1 =

F0

F
if F < F0

p2 =
m

m0

if m > m0

(4)

m0 and F0 are the initial mass and the initial force of

the bearing. m and F are the mass and the force at

instantaneous parameter values. p1 and p2 denote the

penalties.

The value of the objective function is minimized in the

optimization procedure. The optimization proceeds with
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Fig. 1. Force F , current gain ki and position sti�ness kx calculated in di�erent operating points ip = ip0, x = x0; The optimized bearing:
a) force F , b) current gain ki, c) position sti�ness kx; The non{optimized bearing: d) force F , e) current gain ki, f) position sti�ness kx;

Step 2 until a pre-set minimum parameter variation or a

maximum number of evolutionary iterations are reached.

Results

The optimization has been performed in the operating

point ip = ib = 5 A, x = 0mm and y = 0 mm. The data of

the non{optimized and of the optimized bearing are given

in Table I. The bearing geometry and the optimization

data are given in Fig. 2.

TABLE I. Data of the initial and of the optimized design

data parameter initial optimized
stator yoke sy [mm] 8.5 7.2
rotor yoke ry [mm] 9.0 7.8
leg width lw [mm] 10.0 9.0
bearing length l [mm] 53.0 56.3
bearing mass m [kg] 2.691 2.688
force F [N] 580.01 629.74
objective function q 1 0.92
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Optimization data
number of parameters 4
population size 20
number of iterations 60

Fig. 2. The bearing geometry and the optimization data

The values of the force F , the current gain ki and

the position sti�ness kx (equation (2)) calculated for the

optimized and for the non{optimized bearing by Step 3

through Step 5 are given for di�erent values of the control

current ip = ip0 and rotor displacement x = x0 in Fig. 1.

Conclusion

The paper describes the optimization of a radial AMB

and the determination of the bearing model parameters

linearized about various operating points. It has been

shown that the use of optimization methods in combi-

nation with the FE calculations can increase the maxi-

mum bearing force at an unchanged mass and a negli-

gible increase of magnetic nonlinearities. The values of

the force, position sti�ness and current gain in di�erent

operating points have been determined using FE analy-

sis tools. These results enable the evaluation of the ro-

bustness of the control algorithm. Moreover, they can be

approximated by a continuous function, which is further

used for the linearization in the entire operating range,

and altogether applied in the synthesis of the nonlinear

bearing control. The presented results have been partially

veri�ed by measurements performed on a prototype.
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