

1

Abstract--Post-processing of multiple and hybrid finite

element field solutions requires a post-processor that is more
general than standard available tools. A novel three-level
hierarchic post-processor structure is proposed. The first level of
the post-processing environment is a library of programming
objects representing mathematical entities such as fields, tables,
geometries, meshes and numbers and of operations manipulating
them. Frequently used post-processing tasks may be coded
explicitly in this kernel and compiled into executable code. An
interpreter for mathematical expressions forms the second level
of the post-processor structure. Characteristic sequences of
operations can be gathered in scripts or in functions and
interpreted at run-time. The third level passes commands to the
field parser or to the visualisation routines. Selected simulation
examples demonstrate the capabilities of the chosen approach.

Index Terms--Design automation, finite element methods,

object oriented programming, software libraries.

I. INTRODUCTION
ingle field finite element processing is commonly used in
computer aided design [1], computer assisted teaching [2]
and numerical analysis. Standard post-processing tools to

obtain derived information out of field solutions are available.
The design and research in electric and magnetic fields deal
with coupled field problems [3] and automated iterative
design procedures [4]. As a result, the complexity of the post-
processing schemes increases. A choice has to be made
between generally applicable post-processors and easy to use
post-processing tools. The question arises if the desired
properties of generality and convenience can be brought in
agreement. In this paper, it will be shown that a novel object-
oriented implementation of an entire post-processing
environment is capable to meet such requirements.

Manuscript received October 25, 1999. The authors are grateful to the

Belgian "Fonds voor Wetenschappelijk Onderzoek Vlaanderen" (project
G.0427.98) for its financial support of this work and the Belgian Ministry of
Scientific Research for granting the IUAP No. P4/20 on Coupled Problems
in Electromagnetic Systems. The research Council of the K.U.Leuven
supports the basic numerical research.

H. De Gersem, U. Pahner and K. Hameyer are with the Katholieke
Universiteit Leuven, Dep. ESAT, Div. ELEN, Kardinaal Mercierlaan 94, B-
3001 Leuven, Belgium (telephone: 32-16-321020, e-mail:
Herbert.DeGersem@esat.kuleuven.ac.be, Uwe.Pahner@esat.kuleuven.ac.be
and Kay.Hameyer@esat.kuleuven.ac.be).

II. POST-PROCESSOR VERSUS POST-PROCESSING
ENVIRONMENT

Here, a distinction is made between a single post-processor
and a post-processing environment. A post-processor
provides the indispensable interface between the user and the
finite element solution for a field problem [1]. A lot of
numerical field computations result in a potential field that is
different from the quantities of interest. As a result, a post-
processing step is required to derive the values of information
from the more abstract finite element solution. Engineers
interprete the magnetic behaviour of a device by a plot of the
magnetic flux lines or the magnetic flux density distribution
rather then using a plot of the magnetic vector potential
distribution. The aim of the field computation can also be a
global quantity such as an inductance or a force [4]. The post-
processor performs a role as a buffer between the abstract
level of the finite element software and the engineering world
of magnetic fluxes, temperatures and displacements. The most
important features of a post-processor are its user-friendliness
and its clarity. Therefore, most post-processors are developed
for single field processing and for fields with one specific
nature and discretisation. The number of possible post-
processing operations is often limited and forbidden
operations are excluded.

A post-processing environment on the other hand,
incorporates and couples fields of different natures and with
hybrid discretisation techniques. It is possible to adapt the
environment to future requirements. It is also intended to use
parts of the post-processing environment to build problem
specific post-processors. For research and advanced
engineering purposes, an interactive and scripted use of the
environment is offered. It is difficult to provide a clear,
general and robust syntax and sufficiently protect against
unacceptable use of post-processing commands. The high
number and the abstract formalism of the commands, require
an expert to work with the environment. Fig. 1a shows the
additional post-processing features of the general
environment compared to those of the single tool. The
properties of a good post-processing software are pointed out
in Fig.1b.

Object-Oriented Implementation of an
Interactive and Automatic Field-Processing

Surface
Herbert De Gersem, Uwe Pahner and Kay Hameyer

S

2

a) b)
Fig. 1. a) Features of a post-processor and a post-processing environment;
b) Properties of post-processing software.

III. OBJECT-ORIENTED DESIGN
The development of a software that is both, general and

transparent, requires a modular approach [5]. Modularity in
operations is achieved by splitting up complex operations into
combinations of simpler ones. This requires a top-down
structure of the software design. However, one of the major
difficulties in a general post-processor is the handling of a
huge amount of data of different origine and nature. Fields
and numbers have their own storage protocols. Modularity for
data treatment is maintained by using a data-driven
programming philosophy. Additionally, operations may
operate on data independently of its nature, may be specific
for one kind of data or may combine different forms of data
into a new one. Modularity on the level of data and their
characteristic operations, is obtained by choosing an object-
oriented approach. The underlying concept of object-oriented
design is that one should treat both, data and operation in the
software system, as collections of co-operating objects within
a hierachy of classes [6]. This means that a link is made
between the top-down structured and data-driven design
methods. Data are gathered in objects. Operations working
upon a single as well as upon multiple objects are defined as
member or friend functions associated with the appropriate
objects. Progress in execution is obtained as state changes of
objects due to functions operating on them. The
implementation uses the higher-order C++ programming
language [5], [7].

The conceptual properties of object-oriented design,
especially attractive for developing a post-processing
environment, are
1) Data hiding: As some entities in the post-processor require
a large amount of data, gathering data in structures is
extremely useful. A mesh is easily told to be a collection of
triangles but consists of several lists representing the
elements, the nodes and the mesh connectivity. The
construction of a mesh class hides the practical data
manipulating from the higher level programming.
2) Member functions: Functions can be associated with the
data upon which they operate. A function rotating parts of a
mesh for instance becomes a member function of the mesh
class.
3) Abstraction and inheritance: Fields, tables, numbers and
symbolic expressions are mathematical quantities upon which
mathematical operations are defined. These classes share a
common part of data and functions. Meshes and geometries

have a topological nature. Translation and rotation are
member functions of a common class representing the
topology. At last, all classes are entities and may be
represented by a name, treated by symbolic expressions and
stored in memory or on disk.
4) Function overloading: A lot of operations have the same
nature but different practical implications on different objects.
The addition of numbers and fields are somehow related in
the mathematical sense but differ from the low-level
programming point of view. Function overloading enable the
abstraction of operations.
Additionally, standard building blocks such as single/double
linked lists, dictionaries and handle classes, are used to
overcome problems of data storage, data indexing, multiple
referred objects and memory management [7].

IV. HIERARCHICAL STRUCTURE
To satisfy the required but contradictory properties of

generality and transparancy, the post-processing environment
is built as a three-level hierarchy (Fig. 2). As top-down
principle, the levels represent an increasing abstraction from
the concept of the physical field to the concept of the finite
element solution. The user is invited to interact with the
environment at the level that is most suited for his application.
Visualisation and online post-processing tasks are performed
in an interactive top level. Problem specific shells, repetitive
tasks and mathematical field computations operate on the
second level. Frequently used routines, problem dependent
post-processing tools and new finite element applications
arise from specific compilations using the building blocks of
the lowest level.

Fig. 2. Hierarchical structure of the post-processing environment.

A. Level I: Constitutive Post-Processing Objects
The mathematic offers a general and robust framework to

express and simulate the physical reality and its behaviour. In
a first step all present quantities are defined. Fields, meshes,
values, tables, geometries and symbolic expressions of them
are characterised by their corresponding objects (Fig. 3). All
entities may additionally be complex quantities or vectors. In
the proposed post-processing environment, all fields have a
discrete nature, they are solutions on a certain discretisation
of the domain. Tables are lists of data samples. In a second
step, all operations operating on single as well as multiple
objects, are defined. A mathematical syntax combined with a
programming language, capable of overloading functions and
operations, provide a natural mechanism for this.

3

Fig. 3. Class hierarchy of the different entities.

The library of objects and operations can be shared
between the finite element solvers and the post-processing
environment. Common objects ensure the compability
between the finite element solvers and the post-processing
tools. For instance, new features for meshes will be
automatically transferred to the post-processing environment
if both applications share the same mesh object.

At this stage, the post-processing environment has become
a box of bricks for coding finite element computations. The
classes hide the low level data and operations of the objects
from unauthorised use. Rather circumstantial operations on
fields as for instance the multiplication of two fields f1 and
f2 with different meshes and/or elements of various

polynomial degrees, become simply expressable as “f1*f2”.

B. Level II: Symbolic Parser for Finite Element Post-
Processing
If multiple fields, curves, values and meshes are involved,

the post-processor requires either a stack structure or a
symbolic driver, able to distinct and combine the different
entities [1]. A stack oriented post-processor puts all entities
on a stack. Stack operations shuffle the stack to present the
right entities to the calculation engine. For entities with a
different nature, multiple stacks can be set up. Organising a
stack can be rather clumsy for the user. Therefore, here, a
choice is made for the more mathematically related symbolic
way of entity management. A unique name is associated with
each entity. A new entity is built by a symbolic expression in
terms of the names of yet existing entities. As long as the data
itself is not required, the new entity only exists as a symbolic
expression. When the entity has to be reported, visualised or
stored, the symbolic expression is parsed and the received
data replaces the symbolic expression associated with the
user-defined name. This approach of postponed calculation
prevents the computation of entities that are not further used
or visualised.

As some post-processing tasks are characteristic and
frequently used, the possibility to script sequences of
operations is provided by this software implementation. This
is an easy way to extend the effectiveness of the general post-
processing environment to problem specific shells and user-
defined post-processing routines. Functions with their
associated parameters and return values are used as a
formalism.

The syntax of the expressions have the same mathematical
nature as the operations defined in level I. This enables the
transfer of the script from the second to the first level, its
compilation into fast executable code and/or its addition as a
module to the post-processing environment. New post-

processing features may originate from user interactions and
scripting. As soon as they are mature, the script evaluates to a
proper part of the post-processing environment.

C. Level III: Command Line Interpreter
The topmost level provides aside the symbolic parser an

interactive way for visualisation. It ensures the interface to
other software.

V. APPLICATION
The developed post-processing environment is used for the

post-processing of an axisymmetric magnetic model. A
magnetic selector is excited by a coil embedded in an iron C-
core (Fig. 4). The moving part consists of two inversely
magnetised permanent magnets separated by iron yokes.
Depending on the sign of the excitation current, one of both
possible stable positions is chosen (Fig. 4). The magnetic
field is computed using the θ=φ rA potential in the
axisymmetric differential equation [8], [9].

 θ−=

∂
∂φν

∂
∂+

∂
∂φν

∂
∂ J

zrzrrr
. (1)

The magnetic flux density is

 () ()

∂
φ∂

∂
φ∂−=

∂

∂
∂

∂
−= θθ

rrzrr
rA

rz
A

BB zr
1,11,, . (2)

The force is computed using the Maxwell stress tensor [1].
For axisymmetric problems, the force components in the θ -
direction and the r-direction vanish. The force in the z-
direction is given by

 ∫ πν=
2

1

20

z

z
zrz dzrBBF (3)

along a line parallel to the axis of symmetry and

 ()∫ π+
ν

=
2

1

2
2

220
r

r
rzz drrBBF (4)

along a line perpendicular to the axis of symmetry.

b)

a)

c)

Fig. 4. a) Simulation example of a magnetic selector; stable position of the
magnetic selector a) for negative excitation and b) for positive current
excitation.

Fig. 5 shows the interactive post-processing commands and
parameters for the axisymmetric magnetic problem. The
syntax uses operation and function calls. Partial
differentiation is performed using the functions “ddx()” and

4

“ddy()”. A field is evaluated on a contour using the “/”-
operator. The post-processor includes the definition of a
contour, the computation of the magnetic flux density using
(2), the calculation of the force in the z-direction using (3)
and the visualisation of the fields and their restrictions (Fig. 6
and Fig. 7a).

Fig. 5. Interactive commands for the post-processing environment.

a) b)

Fig. 6. a) Flux line plot of the magnetic field with the curve for field
evaluation and b) r-component of the magnetic flux density in the magnetic
selector.

a) b)
Fig. 7. a) Br along a line in the middle of the airgap of the magnetic selector
and b) force acting on the translator as a function of its position relative to
the excitation coil of the magnetic selector.

Fig. 8. C++ engine for axisymmetric force computation using the Maxwell
stress tensor.

As force computation is technically important and
frequently used, a stand-alone C++ routine is designed and
compiled (Fig. 8). The force calculation tool uses a general
contour that may consist of several successive primitives,
arbitrarily oriented. Nevertheless, the syntax remains the same
as on the interactive level. In the example, the compiled
executable is used for the quick, automated and parametrised
computation of the force as a function of the position of the
translator relative to the excitation part of the magnetic
selector (Fig. 7b).

VI. CONCLUSIONS
With the recent progress in coupled problem modelling and

hybrid field discretisation techniques, suitable post-processing
tools are recommended. The development of a general post-
processing environment which is able to process both
multiple and hybrid fields and extendable to future
requirements, attracts particular attention to the concept and
to the programming techniques. Here, the choice for a three-
level structure enables adequate interaction with the
environment for both normal skilled users and researchers.
Object-oriented programming techniques such as data and
function hiding, inheritance and function overloading, create
a fire-wall between the low-level experimental coding that is
permanently under construction, the mathematical parser,
providing the general field processing, and the user interface
for convenient post-processing. The three-level hierarchy
supports also the automating features. The mathematical
parser interpretes scripts. By using the programming objects
of the lowest level, scripts may be compiled and added to the
post-processing environment. Simulations of a technical
example, a magnetic selector, demonstrate the suitability of
the developed object-oriented approach. The described post-
processor is succesfully implemented in the in-house software
package Olympos2D.

VII. REFERENCES
[1] D.A. Lowther and P.P. Silvester, Computer-Aided Design in

Magnetics, Springer-Verlag, Berlin and New York, 1985.
[2] K. Hameyer, R. Belmans, R. Hanitsch and R.M. Stephan, “CAT:

Computer Assisted Teaching in Magnetics,” IEEE Trans. Magn.,
Vol. 34, No. 5, 1998, pp. 3304-3307.

[3] K. Hameyer, J. Driesen, H. De Gersem and R. Belmans, “Computation
of quasi-static electromagnetic fields with respect to coupled
problems,” Proc. of the 8th Int. IGTE Symp. on Numerical Field
Calculation in Electrical Engineering, 1998, pp. 100-105.

[4] U. Pahner, R. Mertens, H. De Gersem, R. Belmans and K. Hameyer,
“A parametric finite element environment tuned for numerical
optimization,” IEEE Trans. Magn., Vol. 34, No. 5, 1998, pp. 2936-
2939.

[5] B. Stroustrup, The C++ Programming Language, 2nd ed., Addison-
Wesley Publishing Company, Reading, 1992.

[6] G. Booch, Object-Oriented Analysis and Design, The
Benjamin/Cummings Publishing Company, Redwood City, 1994.

[7] B. Stroustrup, The Design and Evolution of C++, Addison-Wesley
Publishing Company, Reading, 1994.

[8] K.J. Binns, P.J. Lawrenson and C.W. Trowbridge, The Analytical and
Numerical Solution of Electric and Magnetic Fields, Wiley,
Chichester, 1994.

[9] P.P. Silvester and R.L. Ferrari, Finite Elements for Electrical
Engineers, 2nd ed., Cambridge University Press, Cambridge, 1990.

	Introduction
	Post-Processor versus Post-Processing Environment
	Object-Oriented Design
	Hierarchical Structure
	Level€I: Constitutive Post-Processing Objects
	Level II: Symbolic Parser for Finite Element Post-Processing
	Level III: Command Line Interpreter

	Application
	Conclusions
	References

