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Abstract--Post-processing of multiple and hybrid finite 

element field solutions requires a post-processor that is more 
general than standard available tools. A novel three-level 
hierarchic post-processor structure is proposed. The first level of 
the post-processing environment is a library of programming 
objects representing mathematical entities such as fields, tables, 
geometries, meshes and numbers and of operations manipulating 
them. Frequently used post-processing tasks may be coded 
explicitly in this kernel and compiled into executable code. An 
interpreter for mathematical expressions forms the second level 
of the post-processor structure. Characteristic sequences of 
operations can be gathered in scripts or in functions and 
interpreted at run-time. The third level passes commands to the 
field parser or to the visualisation routines. Selected simulation 
examples demonstrate the capabilities of the chosen approach. 

 
Index Terms--Design automation, finite element methods, 

object oriented programming, software libraries. 

I. INTRODUCTION 
ingle field finite element processing is commonly used in 
computer aided design [1], computer assisted teaching [2] 
and numerical analysis. Standard post-processing tools to 

obtain derived information out of field solutions are available. 
The design and research in electric and magnetic fields deal 
with coupled field problems [3] and automated iterative 
design procedures [4]. As a result, the complexity of the post-
processing schemes increases. A choice has to be made 
between generally applicable post-processors and easy to use 
post-processing tools. The question arises if the desired 
properties of generality and convenience can be brought in 
agreement. In this paper, it will be shown that a novel object-
oriented implementation of an entire post-processing 
environment is capable to meet such requirements. 
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II. POST-PROCESSOR VERSUS POST-PROCESSING 
ENVIRONMENT 

Here, a distinction is made between a single post-processor 
and a post-processing environment. A post-processor 
provides the indispensable interface between the user and the 
finite element solution for a field problem [1]. A lot of 
numerical field computations result in a potential field that is 
different from the quantities of interest. As a result, a post-
processing step is required to derive the values of information 
from the more abstract finite element solution. Engineers 
interprete the magnetic behaviour of a device by a plot of the 
magnetic flux lines or the magnetic flux density distribution 
rather then using a plot of the magnetic vector potential 
distribution. The aim of the field computation can also be a 
global quantity such as an inductance or a force [4]. The post-
processor performs a role as a buffer between the abstract 
level of the finite element software and the engineering world 
of magnetic fluxes, temperatures and displacements. The most 
important features of a post-processor are its user-friendliness 
and its clarity. Therefore, most post-processors are developed 
for single field processing and for fields with one specific 
nature and discretisation. The number of possible post-
processing operations is often limited and forbidden 
operations are excluded. 

A post-processing environment on the other hand, 
incorporates and couples fields of different natures and with 
hybrid discretisation techniques. It is possible to adapt the 
environment to future requirements. It is also intended to use 
parts of the post-processing environment to build problem 
specific post-processors. For research and advanced 
engineering purposes, an interactive and scripted use of the 
environment is offered. It is difficult to provide a clear, 
general and robust syntax and sufficiently protect against 
unacceptable use of post-processing commands. The high 
number and the abstract formalism of the commands, require 
an expert to work with the environment. Fig. 1a shows the 
additional post-processing features of the general 
environment compared to those of the single tool. The 
properties of a good post-processing software are pointed out 
in Fig.1b. 
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a) b)  
Fig. 1. a) Features of a post-processor and a post-processing environment;  
b) Properties of post-processing software. 

III. OBJECT-ORIENTED DESIGN 
The development of a software that is both, general and 

transparent, requires a modular approach [5]. Modularity in 
operations is achieved by splitting up complex operations into 
combinations of simpler ones. This requires a top-down 
structure of the software design. However, one of the major 
difficulties in a general post-processor is the handling of a 
huge amount of data of different origine and nature. Fields 
and numbers have their own storage protocols. Modularity for 
data treatment is maintained by using a data-driven 
programming philosophy. Additionally, operations may 
operate on data independently of its nature, may be specific 
for one kind of data or may combine different forms of data 
into a new one. Modularity on the level of data and their 
characteristic operations, is obtained by choosing an object-
oriented approach. The underlying concept of object-oriented 
design is that one should treat both, data and operation in the 
software system, as collections of co-operating objects within 
a hierachy of classes [6]. This means that a link is made 
between the top-down structured and data-driven design 
methods. Data are gathered in objects. Operations working 
upon a single as well as upon multiple objects are defined as 
member or friend functions associated with the appropriate 
objects. Progress in execution is obtained as state changes of 
objects due to functions operating on them. The 
implementation uses the higher-order C++ programming 
language [5], [7]. 

The conceptual properties of object-oriented design, 
especially attractive for developing a post-processing 
environment, are 
1) Data hiding: As some entities in the post-processor require 
a large amount of data, gathering data in structures is 
extremely useful. A mesh is easily told to be a collection of 
triangles but consists of several lists representing the 
elements, the nodes and the mesh connectivity. The 
construction of a mesh class hides the practical data 
manipulating from the higher level programming. 
2) Member functions: Functions can be associated with the 
data upon which they operate. A function rotating parts of a 
mesh for instance becomes a member function of the mesh 
class. 
3) Abstraction and inheritance: Fields, tables, numbers and 
symbolic expressions are mathematical quantities upon which 
mathematical operations are defined. These classes share a 
common part of data and functions. Meshes and geometries 

have a topological nature. Translation and rotation are 
member functions of a common class representing the 
topology. At last, all classes are entities and may be 
represented by a name, treated by symbolic expressions and 
stored in memory or on disk. 
4) Function overloading: A lot of operations have the same 
nature but different practical implications on different objects. 
The addition of numbers and fields are somehow related in 
the mathematical sense but differ from the low-level 
programming point of view. Function overloading enable the 
abstraction of operations. 
Additionally, standard building blocks such as single/double 
linked lists, dictionaries and handle classes, are used to 
overcome problems of data storage, data indexing, multiple 
referred objects and memory management [7]. 

IV. HIERARCHICAL STRUCTURE 
To satisfy the required but contradictory properties of 

generality and transparancy, the post-processing environment 
is built as a three-level hierarchy (Fig. 2). As top-down 
principle, the levels represent an increasing abstraction from 
the concept of the physical field to the concept of the finite 
element solution. The user is invited to interact with the 
environment at the level that is most suited for his application. 
Visualisation and online post-processing tasks are performed 
in an interactive top level. Problem specific shells, repetitive 
tasks and mathematical field computations operate on the 
second level. Frequently used routines, problem dependent 
post-processing tools and new finite element applications 
arise from specific compilations using the building blocks of 
the lowest level. 

 

 
Fig. 2. Hierarchical structure of the post-processing environment. 
 

A. Level I: Constitutive Post-Processing Objects 
The mathematic offers a general and robust framework to 

express and simulate the physical reality and its behaviour. In 
a first step all present quantities are defined. Fields, meshes, 
values, tables, geometries and symbolic expressions of them 
are characterised by their corresponding objects (Fig. 3). All 
entities may additionally be complex quantities or vectors. In 
the proposed post-processing environment, all fields have a 
discrete nature, they are solutions on a certain discretisation 
of the domain. Tables are lists of data samples. In a second 
step, all operations operating on single as well as multiple 
objects, are defined. A mathematical syntax combined with a 
programming language, capable of overloading functions and 
operations, provide a natural mechanism for this. 
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Fig. 3. Class hierarchy of the different entities. 
 

The library of objects and operations can be shared 
between the finite element solvers and the post-processing 
environment. Common objects ensure the compability 
between the finite element solvers and the post-processing 
tools. For instance, new features for meshes will be 
automatically transferred to the post-processing environment 
if both applications share the same mesh object. 

At this stage, the post-processing environment has become 
a box of bricks for coding finite element computations. The 
classes hide the low level data and operations of the objects 
from unauthorised use. Rather circumstantial operations on 
fields as for instance the multiplication of two fields f1  and 
f2  with different meshes and/or elements of various 

polynomial degrees, become simply expressable as “f1*f2”. 

B. Level II: Symbolic Parser for Finite Element Post-
Processing 
If multiple fields, curves, values and meshes are involved, 

the post-processor requires either a stack structure or a 
symbolic driver, able to distinct and combine the different 
entities [1]. A stack oriented post-processor puts all entities 
on a stack. Stack operations shuffle the stack to present the 
right entities to the calculation engine. For entities with a 
different nature, multiple stacks can be set up. Organising a 
stack can be rather clumsy for the user. Therefore, here, a 
choice is made for the more mathematically related symbolic 
way of entity management. A unique name is associated with 
each entity. A new entity is built by a symbolic expression in 
terms of the names of yet existing entities. As long as the data 
itself is not required, the new entity only exists as a symbolic 
expression. When the entity has to be reported, visualised or 
stored, the symbolic expression is parsed and the received 
data replaces the symbolic expression associated with the 
user-defined name. This approach of postponed calculation 
prevents the computation of entities that are not further used 
or visualised. 

As some post-processing tasks are characteristic and 
frequently used, the possibility to script sequences of 
operations is provided by this software implementation. This 
is an easy way to extend the effectiveness of the general post-
processing environment to problem specific shells and user-
defined post-processing routines. Functions with their 
associated parameters and return values are used as a 
formalism. 

The syntax of the expressions have the same mathematical 
nature as the operations defined in level I. This enables the 
transfer of the script from the second to the first level, its 
compilation into fast executable code and/or its addition as a 
module to the post-processing environment. New post-

processing features may originate from user interactions and 
scripting. As soon as they are mature, the script evaluates to a 
proper part of the post-processing environment. 

C. Level III: Command Line Interpreter 
The topmost level provides aside the symbolic parser an 

interactive way for visualisation. It ensures the interface to 
other software. 

V. APPLICATION 
The developed post-processing environment is used for the 

post-processing of an axisymmetric magnetic model. A 
magnetic selector is excited by a coil embedded in an iron C-
core (Fig. 4). The moving part consists of two inversely 
magnetised permanent magnets separated by iron yokes. 
Depending on the sign of the excitation current, one of both 
possible stable positions is chosen (Fig. 4). The magnetic 
field is computed using the θ=φ rA  potential in the 
axisymmetric differential equation [8], [9]. 
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The force is computed using the Maxwell stress tensor [1]. 
For axisymmetric problems, the force components in the θ -
direction and the r-direction vanish. The force in the z-
direction is given by 
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along a line perpendicular to the axis of symmetry. 
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c) 

Fig. 4. a) Simulation example of a magnetic selector; stable position of the 
magnetic selector a) for negative excitation and b) for positive current 
excitation. 
 

Fig. 5 shows the interactive post-processing commands and 
parameters for the axisymmetric magnetic problem. The 
syntax uses operation and function calls. Partial 
differentiation is performed using the functions “ddx()” and 
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“ddy()”. A field is evaluated on a contour using the “/”-
operator. The post-processor includes the definition of a 
contour, the computation of the magnetic flux density using 
(2), the calculation of the force in the z-direction using (3) 
and the visualisation of the fields and their restrictions (Fig. 6 
and Fig. 7a). 

 
Fig. 5. Interactive commands for the post-processing environment. 

    
a)  b) 

Fig. 6. a) Flux line plot of the magnetic field with the curve for field 
evaluation and b) r-component of the magnetic flux density in the magnetic 
selector. 

a) b)  
Fig. 7. a) Br along a line in the middle of the airgap of the magnetic selector 
and b) force acting on the translator as a function of its position relative to 
the excitation coil of the magnetic selector. 

 
Fig. 8. C++ engine for axisymmetric force computation using the Maxwell 
stress tensor. 

As force computation is technically important and 
frequently used, a stand-alone C++ routine is designed and 
compiled (Fig. 8). The force calculation tool uses a general 
contour that may consist of several successive primitives, 
arbitrarily oriented. Nevertheless, the syntax remains the same 
as on the interactive level. In the example, the compiled 
executable is used for the quick, automated and parametrised 
computation of the force as a function of the position of the 
translator relative to the excitation part of the magnetic 
selector (Fig. 7b). 

VI. CONCLUSIONS 
With the recent progress in coupled problem modelling and 

hybrid field discretisation techniques, suitable post-processing 
tools are recommended. The development of a general post-
processing environment which is able to process both 
multiple and hybrid fields and extendable to future 
requirements, attracts particular attention to the concept and 
to the programming techniques. Here, the choice for a three-
level structure enables adequate interaction with the 
environment for both normal skilled users and researchers. 
Object-oriented programming techniques such as data and 
function hiding, inheritance and function overloading, create 
a fire-wall between the low-level experimental coding that is 
permanently under construction, the mathematical parser, 
providing the general field processing, and the user interface 
for convenient post-processing. The three-level hierarchy 
supports also the automating features. The mathematical 
parser interpretes scripts. By using the programming objects 
of the lowest level, scripts may be compiled and added to the 
post-processing environment. Simulations of a technical 
example, a magnetic selector, demonstrate the suitability of 
the developed object-oriented approach. The described post-
processor is succesfully implemented in the in-house software 
package Olympos2D. 
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