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Abstract 
 
Electromagnetic devices are often operated under non-linear conditions.  Therefore, the current and/or the 
voltage may not be sinusoidal.  This is the case when power electronic sources or loads are applied.  
Ferromagnetic saturation causes the machine to behave non-linear as well .  Four different FEM algorithms to 
simulate and approximate the joint effect of the mentioned combined non-linearities are discussed here.  A 
practical example is used to illustrate and compare the approaches used. 
 

Introduction 
 
Saturated electromagnetic devices, such as saturated transformers and AC-machines, are more and more operated 
by power electronic converters.  The machines are subject to non-sinusoidal voltage and current waveforms.  
Generator loads, such as photovoltaic inverters, are often non-linear.  On the other hand, more and more 
electrical loads have to be considered severely non-linear as well .  This behaviour is mainly caused by power 
electronic devices inside the loads with the associated control techniques. 
Traditionally saturation effects are considered as only non-linear phenomena.  This gave rise to quasi-static 
methods and algorithms using single harmonic models and equivalent material properties [1] that prove to work 
well for many types of machines in “ traditional” periodic operating modes [2].  For “non-traditional” states, 
time-stepping approaches were advisable, yielding entire transient numerical models.  However, often 
simplifying approximations can be found enabling to calculate many conditions by using less time consuming 
methods.  Since the steady state is an important calculation aim, the frequency domain with its implicit 
assumption of a steady state condition, is a good mathematical solution domain to look for approximations.  
 

FEM Approximations in the Frequency Domain 
 
To describe the magnetic field in the frequency domain, the 2D vector potential equation is, before applying the 
FEM-method, transformed into the frequency domain (Fourier Transform): 
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The convolution product enables mathematicall y the generation of new frequencies.  The time-derivative will be 
replaced by appropriate jω-operators.  The Fourier spectra of the periodic fields are in fact discrete series.  It is 
important that the frequency components are known in advance to be able to take advantage of the approximate 
methods.  If the frequencies are unknown, time domain approximations can be applied. 
Depending on the particular application and on the relative magnitude of the frequency components, different 
approximations can be performed, yielding non-linear computation algorithms with a varying degree of 
complexity. 
 
Single harmonic approximation (time harmonic, sinusoidal) 
 
In this time harmonic approach, only the fundamental magnetic field frequency component, modelled as a 
complex number and a DC-component of the (effective) reluctivity are considered [1,2].  It is possible to include 



iron losses by using a complex reluctivity [3].  This can be considered as an elliptic approximation of the 
magnetic BH-characteristic.  These assumptions yield: 
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Multi-harmonic I 
 
In the case the magnetic field contains a dominant fundamental frequency component, it can be assumed that the 
DC-saturation level is dominated by this component.  A typical example of this situation is a magnetic device 
connected to a strong sinusoidal power grid feeding a non-linear load producing current harmonics.  The total 
magnetic field can then be calculated by means of an uncoupled set of equations, with the harmonic equation (4) 
describing the dominant harmonic being the only non-linear equation and (5) determining the harmonic field 
components. 
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Eq. (4) must be solved first, followed by the other field harmonics (eq. (5)).  The solution of the harmonic fields 
can be parallelized because the saturation level is determined by the fundamental frequency (4). 
 
Multi-harmonic II  
 
In many cases, however, the field harmonics are important, e.g. when the supply voltage is non-sinusoidal and 
contains higher harmonics and the device is not too much saturated.  Thus, all of the harmonics have to be 
considered to obtain the DC-saturation, but it is assumed that the field components do not mutually interact 
directly.  Therefore, all the equations are non-linearly coupled. 
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The different equations (6) are solved for a certain operating point, in which the saturation state is temporaril y 
frozen.  Hence, the set of equations becomes locally decoupled and can be calculated in parallel.  The 
synchronisation point in this algorithm is the non-linear update of the material properties.   
 
Harmonic Balance 
 
When the mutual interactions between the different harmonics, expressed by the convolution product terms in 
eq. (1), caused by saturation, are modelled, the different equations become intensely coupled [4,5] and a full 
harmonic balance is required.  Both, harmonics in the field as well as in the material series are included.  FFT 
algorithms can be used to calculate this non-linear reluctivity updates. 
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The semi-uncoupled multi-harmonic algorithms I and II have the advantage that they can be implemented in a 
parallel environment, such as a cluster of workstations.  However, the harmonic balance algorithm can be 
parallelised up to a certain point, but in general more than one iteration over the different harmonic equations is 
required before a non-linear reluctivity update can be performed [5].  The very time consuming alternative is a 
sequential time-stepping non-linear simulation, accounting for all non-linearities. 
 

Applications 
 
For comparison, the discussed algorithms are applied to a single-phase transformer FEM model.  The mesh is 
shown in Fig. 1.  The core consists of ferromagnetic material.  The discussed algori thms are implemented in an 
FEM package and parallelized using the PVM-library [5].  Hysteresis efects are neglected.  Therefore, only odd 
harmonics are found in the magnetic field and the material series in the harmonic balance algorithm contains a 
DC-term and even harmonics only. 



 
Fig. 1  2D-mesh of the transformer model used in calculations. 

 

No-load condition with sinusoidal voltage 
 
When the transformer is connected to a sinusoidal primary voltage of 300 V at 50 Hz, saturation of the magnetic 
material occurs in the corners of the yoke (Fig. 2).  The adaptively refined mesh is refined in these locations.  
Only harmonics caused by saturation are found.  Obviously, these do only occur in the multi-harmonic 
algorithms.  The right-hand sides of the equations are fill ed in with the voltage source.  At higher harmonic 
frequencies, the ampli tude of these sources is zero.  Saturation harmonics are found in the no-load current. 
The solutions of the multi-harmonic algorithms I and II converge towards the single harmonic algorithm.  
Therefore only the harmonic balance is meaningful, since the off-diagonal convolution terms can be identified as 
arbitrary currents generating an – only mathematicall y meaningful – magnetic field.  The first three solutions of 
the harmonic balance algorithm, performed on a series running up to the 15th field harmonic, are shown in Fig. 2.  
The ‘arbitrary currents’ in the corner indicate local saturation; they seem to push the flux out of the corners. 
 

   
a) fundamental frequency b) 3rd harmonic c) 5th harmonic 

Fig. 2   Set of solutions by the harmonic balance algorithm on the single-phase transformer model. 
 

No-load condition with square-wave voltage 
 
In a second application, the same transformer is operated by a square-wave voltage.  In this case the multi-
harmonic I and II algorithms are useful and are forming an approximation to the exact solution.  Fig. 3 shows the 
driving square-wave voltage for a low frequency approximation (see [5] for discussion), cutting off at 750 Hz. 
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Fig. 3  Square wave approximation using a limited number of harmonics. 
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The difference between the algorithms can be noticed in a graph of the no-load currents (Fig. 4), with the exact 
current as obtained by a transient simulation for comparison.  It can be seen that the harmonic balance algorithm 
follows the no-load current very good, until the sharp peak.  At this point of strong ferromagnetic saturation, the 
frequencies are too high and are not considered in this approach.  Here, multi-harmonic II overestimates the 
current, whereas the faster converging multi harmonic I comes close to the harmonic balance solution. 
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Fig. 4  No-load current under semi-square wave voltage compared for the different algorithms. 

 

When (harmonic) loads are considered, identical results are obtained.  Convergence is usually reached faster 
since the load-related harmonic leakage fluxes determine the high frequency fields. 
 

Discussion and conclusion 
 
In general MH II seems to overestimate the saturation effects more than MH I, since it averages them out over 
the whole time span.  MH I works fine when there is a dominant fundamental as it is the case with most PWM -
schemes.  Harmonic balance can account for the time-local occurrence of saturation up till a preset maximum 
frequency and delivers the best approximation, but leads to longer computation times and a more diff icult 
convergence behaviour. 
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